• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bayesian network-based risk analysis methodology: A case of atmospheric and vacuum distillation unit

Zhang, Junyan; Cai, Baoping; Mulenga, Kabwe; Liu, Yiliu; Xie, Min
Journal article
Submitted version
Thumbnail
View/Open
PSEP-D-17-01063.pdf (1.686Mb)
URI
http://hdl.handle.net/11250/2586985
Date
2018
Metadata
Show full item record
Collections
  • Institutt for maskinteknikk og produksjon [2524]
  • Publikasjoner fra CRIStin - NTNU [19778]
Original version
Process Safety and Environmental Protection. 2018, 117 660-674.   10.1016/j.psep.2018.06.012
Abstract
Chemical and petrochemical accidents, such as fires and explosions, do not happen frequently but have considerable consequences. These accidents compromise not only human safety but also cause significant economic losses and environmental contamination. The increasing complexity of chemical infrastructures increases the requirements of risk prevention. Thus, risk analysis for petrochemical systems is essential in helping analysts find the weakest process in the entire system and be used to strengthen the process and improve safety. Risk analysis has been previously studied; however, traditional methods have limitations. This study proposes a methodology that is based on Bayesian networks by giving a model for system risk analysis. The event is classified into three categories; cause, incident, and accident, according to criticality and thus, the model is analyzed as a three-layered structure. The application of the methodology is demonstrated by analyzing a vacuum distillation and an atmospheric unit. An exact reasoning method is used to infer the causality and probability within the events. After inferring the relationship between causes and accidents, mutual information and variance of beliefs are calculated to find the most sensitive event in an accident. Subsequently, means of strengthening operations to prevent accidents are suggested. This study may help companies decrease the cost of risk reduction.
Publisher
Elsevier
Journal
Process Safety and Environmental Protection

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit