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Abstract

Chemical and petrochemical accidents, such as fires and explosions, do not happen frequently but 

have considerable consequences. These accidents compromise not only human safety but also cause 

significant economic losses and environmental contamination. The increasing complexity of 

chemical infrastructures increases the requirements of risk prevention. Thus, risk analysis for 

petrochemical systems is essential in helping analysts find the weakest process in the entire system 

and be used to strengthen the process and improve safety. Risk analysis has been previously studied; 

however, traditional methods have limitations. This study proposes a methodology that is based on 

Bayesian networks by giving a model for system risk analysis. The event is classified into three 

categories; cause, incident, and accident, according to criticality and thus, the model is analyzed as a

three-layered structure.  The application of the methodology is demonstrated by analyzing a vacuum 

distillation and an atmospheric unit. An exact reasoning method is used to infer the causality and 

probability within the events. After inferring the relationship between causes and accidents, mutual 

information and variance of beliefs are calculated to find the most sensitive event in an accident. 
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Subsequently, means of strengthening operations to prevent accidents are suggested. This study may 

help companies decrease the cost of risk reduction.

Keywords: Risk analysis; Bayesian networks; Chemical plant; Three-layer hierarchical model 

1. Introduction 

Petrochemical process industries utilize complex piping and other equipment necessary for 

processing (Zhang et al., 2017). An interlock is an essential component in petrochemical processes, it 

controls various systems and provides better efficiency and reliability. Thousands of interlocks

involved in the control system make the process a complex one. In this case, the occurrence of one 

event triggers another and in turn, lead to a series of events and thus making sure that the entire

system is stable with no fault happening is vital. The occurrence of any fault in such a complex 

control system may lead to a series of incidents, even accidents. Accidents occurring in chemical 

plants have low frequency but significant consequences. Historical data show that several accidents 

with severe consequences have occurred in this industry. Hisken et al. (2016) reported an accident 

that occurred in December 2005 in Buncefield Complex, at the Hertfordshire Oil Storage Terminal, 

in Hertfordshire, England, where a massive fire and a series of explosions led to 43 injuries and 

substantial property losses. The primary cause of the fire was leakage of 250,000 L of fuel, and then 

an explosion in a vapor cloud of evaporated petrol. Li et al. (2016) documented one of the most 

significant accidents reported in history, which happened at the British Petroleum s refinery in Texas 

City, Texas, the USA on 23 Mar 2005. A spillage of raffinate led to the evaporation, and a nearby 

vehicle engine ignited the vapor cloud, resulting in an explosion. The company lost approximately 

$1.5 billion in monetary terms, and 15 fatalities and 180 injuries were recorded. A fire and explosion 

caused by the expanded high-pressure methane gas occurred at the Macondo Well, the Gulf of 

Mexico in the United States on 20 April 2010, which led to 11 workers missing and 17 injuries (Feng 

et al., 2016). This explosion then resulted in a severe oil spillage in the ocean, which lasted for 87 

days. This spillage was excessively harmful to the environment and wildlife, which made it the most 

massive accidental marine oil spill in the history of the petroleum industry.  

The severity of these accidents shows that a risk analysis process for petrochemical systems is 

essential to potentially help identify the weakest link in the system and thus strengthen the process 
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and improve safety. Several methods have been developed for risk analysis. Cai et al. (2012) used 

the Markov method with the multiple-error shock model to evaluate triple and dual modular 

redundancy systems within subsea blowout preventer control systems. Ramírez-Marengo et al. 

(2015) utilized a stochastic approach that included a Monte Carlo simulation to assess risks of vapor 

cloud explosions using Analytic Solver Platform. Fu et al. (2016) proposed a quantitative risk 

assessment model for the potential leakage risk of liquefied natural gas (LNG)-fueled vessels; their 

methods use event tree analysis and computational fluid dynamics simulation. Martins et al. (2016) 

presented a complete quantitative risk analysis for unexpected events that can happen during LNG 

processing. Fuentes-Bargues et al. (2016) used hazard and operability (HAZOP) analysis and risk 

evaluation to analyze the risk in industrial plants. However, this HAZOP method is not able to 

provide quantitative analysis like probability or likelihood dimension to give a risk assessment. 

Bayesian network (BN) is an important probabilistic graphical model, which can efficiently deal 

with various uncertainty problems based on probabilistic information representation and inference.

In recent years, researchers have been using Bayesian networks (BNs) for quantitative risk analyses

to calculate risk models due to the flexibility of the networks. Cai et al. (2013a) proposed a

methodology that uses BNs for the quantitative risk assessment of operations in offshore oil and gas 

industries by translating a flowchart into five steps. Yeo et al. (2016) provided a dynamic safety 

analysis model for LNG carrier offloading; their model investigates different risk factors during the 

process using a BN. Bhandari et al. (2015) introduced a dynamic safety analysis that uses a BN for 

deep-water managed pressure and underbalanced drilling operations. Cai et al. (2013b) presented a 

quantitative risk assessment model that uses BNs for an offshore blowout; their model focuses on 

human factors, which were described as human factor barrier failures. This research was extended by

Cai et al. (2015) by combining root cause analysis and reliability evaluation phases that are based on

BNs and dynamic BNs, respectively, to present a real-time reliability evaluation methodology. 

Several mature, accurate, and approximate inference algorithms have been developed for BNs. 

Approximate inference algorithms can be used when the number of components is increasing. 

This research presents a BN-based risk analysis methodology, which we apply to a critical system 

in petrol chemical processing: an atmospheric and vacuum distillation unit. This component is 
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necessary for petroleum refinery plants and has universal applications. An atmospheric and vacuum 

distillation unit has an elaborate system comprising many separate structures and control nodes.

Equipment and material failures like cracks in the storage vessels, or human errors like operational 

errors or external perturbation, can have a significant influence on work safety. Therefore, system 

control and accident reduction methods need to be developed to identify the weakest processes in the 

system and improve safety. We use BNs for risk analysis in this work.  

The remaining parts of this paper are organized as follows; section 2 presents the proposed 

methodology, based on a BN as a model for system risk analysis. The event is classified into three 

categories; cause, incident, and accident, by criticality, and the model is analyzed as three-layered.

Section 3 discusses the application of the proposed method to the risk analysis of atmospheric and 

vacuum distillation units. After inferring the relationship between the causes and the accident in the 

system, the most plausible cause is detected. Then, suggestions for accident prevention are given. 

Section 4 concludes the work based on the findings. This research can help companies in the 

petrochemical industry reduce the cost of risk analysis. 

2. Methodology 

A BN is a probabilistic graphical model, which is a statistical model that represents a set of random 

events denoted by nodes in a graph. The conditional dependencies of these events are represented by 

edges via a directed acyclic graph. Each node is associated with a probability function as input that 

selects a particular set of values for the parent variables of the node and gives the probability or 

probability distribution of the variable represented by the node. Fig. 1 shows a typical BN example. 
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Fig. 1. A typical example of BNs

Several basic statistical formulas and theories for quantitative BNs are presented based on 

conditional independence and the chain rule and by calculating the product of conditional probability 

tables (CPT), the joint probability of a set of variables U = {A1, A2,..., An} can be given as 

, (1) 

where Pa(Ai) is the parent node of Ai in the BNs and P(U) represents the probabilities (Jensen and 

Nielsen, 2007). 

BNs could provide the analyst the capability to perform forward (predictive) and backward 

(diagnostic) analyses (Cai et al. 2016; 2017; 2018). In diagnostic analysis, a series of evidence E is 

examined, and the posterior probability distribution can be calculated using various inference 

algorithms that are based on Bayes theorem as follows (Darwiche, 2009): 

. (2) 

The important degree of the basic 

mutual information (entropy reduction), which is a widely used measurement model for ranking 

information sources, as shown by Pearl (1988). The uncertainty of a system is assumed to be 

represented by an entropy function given as  

, (3)

where P(t) is the probability distribution of the random variable T.
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Mutual information is the total uncertainty-reducing potential of X, given the original uncertainty 

in T before consulting X. The mutual information of T and X is given by  

, (4)

where P(t, x) is the joint probability distribution function of T and X, and P(t) and P(x) represent the 

marginal probability distribution functions of T and X, respectively. 

Many error or non-error causes may happen in chemical plants because they are complex systems 

with imperfect reliability, and these causes can develop into incidents. An incident is an abnormal 

event that is not supposed to happen in daily operation. If no response is undertaken when an 

incident occurs or if self-healing cannot be performed, then an incident may turn into an accident, 

which is unfavorable.  

Cause, incident, and accident illustrate a sequence of increasing level of criticality. The three 

events are defined as follows. (1) Causes are actions that may cause an abnormal event. (2) Incidents 

are unusual events that may result in an accident, although they have no severe criticality in and of 

themselves. (3) Accidents are the events that have severe consequences and threaten to compromise 

human safety and cause economic loss.  

Although several causes or their combinations may cause an accident, humans prefer the 

nonoccurrence of the accident. From previous data, we can give an analysis of the probability of 

each cause to lead to an accident, if any. Then, from the quantitative analysis, the cause, which has 

the most significant influence on accidents, can be found. After identifying the most influential 

causes, we can gain insights into eliminating such accidents.  

To find the probability relationship between cause and accident, a hierarchical BN model 

comprising three layers (cause, incident, and accident) is established in this section. The steps are as 

follows.

Step 1: Analyzing the system
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A system consists of several components and equipment, which have varying reliabilities. Events 

of different severity levels may happen in the components. The first step is finding the components 

and possible events in it.  

Step 2: Establishing the structural model 

This process is qualitative. Fig. 2 shows the main idea of this paper: the proposed three-layered

hierarchical model that classifies the events into cause, incident, and accident. The different states of 

an event are variables shown by BN nodes. The arrows show their dependencies and cause-effect 

relationships.  

Fig. 2. Three-layered hierarchical model of BNs 

Step 3: Establishing the parameter model 

This process is quantitative. By analyzing the prior probability of the parent event and establishing 

CPT (distribution), the quantitative relationships among the related events are represented.  

Step 4: Performing inference analysis 

By placing the entire established structure and parameter models into Netica, which is a

supporting software that is introduced in the succeeding section, the inferential relationship is 

analyzed, the results are obtained, and the most influential factor is found. 

Step 5: Validating the model 
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Validation can make the model persuasive and is thus a necessary process. To validate the 

proposed BN model, this study uses a three-axiom-based validation method. The three axioms,

which were studied by Jones et al. (2010), are as follows.

(1) A slight increase/decrease in the prior subjective probabilities of each parent node should 

result in a relative increase/decrease of the posterior probabilities of the child node.

(2) Given the variation in the subjective probability distributions of each parent node, the 

magnitude of influence on the child node values should remain consistent.

(3) The total influence magnitudes of the combination of the probability variations from x 

attributes on the values should always be higher than those from the set of x-y (y x) attributes. 

3. Risk analysis of atmospheric and vacuum distillation unit 

We apply the proposed model in Section 2 to an atmospheric and vacuum distillation unit, which 

is a typical equipment used in the petroleum refining process. Oil refineries use different boiling 

points of several products to separate them and remove the unwanted product. This process also 

provides preparations for further processing which utilizes chemical reactions to convert to the 

desired product. This process yields qualified petroleum products, such as liquefied petroleum gas,

jet fuel, fuel oils, and other relevant energy sources. The oil refinery process is divided into primary 

and secondary processes. During the primary process, distillation separates the crude oil into 

gasoline, diesel, wax oil, and residual oil, which have different boiling ranges. The secondary 

process then transfers the heavy products from crude oil distillation into light fractions. Then, 

refinery light fractions or composite is performed with gas to produce high-octane-rating oil. 

Refineries depend on distillation units to separate crude oil into fractions. Atmospheric and vacuum 

distillation units, as necessary units in petroleum refinery plants, have universal applications in the 

industry. Also, these units are the most common equipment in chemical plants. This study illustrates 

the proposed method using this unit due to its relative importance in plants.

Atmospheric distillation unit is used to separate petroleum fractions under atmospheric pressure 

by using temperature. Due to their different boiling point, low boiling fractions vaporize before high 
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boiling fractions. Therefore, the vapor contains more low boiling fractions, and the mixed liquid 

contains more high boiling fractions. The fractions are separated, and a vacuum distillation unit is 

used to separate heavy oil fractions come from atmospheric bottoms, into gas oils and asphalt under 

reduced pressure. Fig. 3 shows the external view of the unit. Fig. 4 shows the typical flow chart of an 

atmospheric and vacuum distillation unit. The complex system, which contains many adjunctive 

systems and control nodes, is shown by the flowchart.

Fig. 3. External view of atmospheric and vacuum distillation unit  
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Fig. 4. Flowchart of atmospheric and vacuum distillation unit 

A real petrochemical plant and its atmospheric and vacuum distillation units are analyzed using 

the proposed methodology. The events and cases are based on previous failure reports and operators

or experts  experience. This application should follow the five steps discussed in the succeeding 

paragraphs.  

Step 1: Analyzing the system 

Possible events in the plant and their relationships should be analyzed first. To explain the 

relationships in the hierarchical BNs model, a common event at the plant is used here 

as an example, excessively low ambient temperature. This event may lead the operator to prefer 

staying indoors, which may result in the negligence of closing an inlet valve (normally a gate valve) 

of a tank, then lead to excessive high operation levels, followed by spills, eventually a fire. 

Several relationships of possible events are identified and illustrated as follows:
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(1) One event happens, leading to another event.  

For example, sometimes because of fluctuations in production, a busy situation may arise, or there 

may be an emergency situation, and the system needs to be shut down. In this case, an operator who 

is doing a shift change may neglect to pass necessary system command to the next crew. The shifted 

operator does not efficiently execute the command resulting in the command not being completed. 

Specifically, shift change may cause crew A to forget to pass the command close the inlet valve of 

the  to crew B, and the inlet valve remaining open will lead to a high level in the tank and 

eventually resulting in tank overflow.

Another example is of low ambient temperatures that may cause the tank pressure control valve to

freeze, leading to a loss of control, creating high pressure in the tank, and finally causing a relief 

valve to lift.

(2) Several causes concurrently happen, leading to one event. 

When the ambient temperature is high, the water curtain system is supposed to be triggered to 

open to cool the equipment. However, if there is a failure of tank water curtain system, it cannot 

open normally.

The main product of petroleum tank sulphur corrosion is FeS, usually found at the bottom of the 

tank. At the bottom of the tank containing the petrochemical product, there is a low oxygen content,

and some of the FeS partially oxidize leading to the production of free sulphur. This low auto-

ignition point sulphur mixed with a loosen structured FeS creates a conducive environment for FeS 

spontaneous ignition. At the same time, when FeS oxidizes, the process (is exothermic) will release 

heat resulting in the tank and product to heat up. If the heating is not controlled in time, the rise in 

temperatures may result in self-ignition. This ignition may burn the rubber seal ring and eventually 

lead to a fire or explosion. 

Another example is of medium volatilization, or heat exchanger, a leakage may cause water to run 

into the standby pump outlet pipeline. If the operator starts this standby pump without checking it 

and removing the water, vaporization can occur leading to pump exhaustion due to the difference of 

water and medium density. The phenomenon of describing when medium cannot be pumped out 

because system consists of both air and liquid is referred to as airlock  The outlet pressure and 
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flow may then drop much lower than the normal value. This abnormal value will trigger the interlock 

to turn off the gas feed causing the furnace to turn off. 

(3) Several causes may independently be the reason for one event. 

For example, an oil leakage, which can lead to a fire, may be caused by any of the following 

events: 

a. High-temperature and high-pressure pumps sealing failure, leading to product leakage. 

b. Usually, there is a little water gathering at the bottom of the oil tank. The operator needs to

drain and cut off the water then separate it from the oil. When the operator does not identify 

the water level accuracy, he/she may drain and cut off the water with oil, which may lead to

oil leakage. 

c. Fracture of outlet pipe fittings such as pipes, elbows, half couplings, nipples, tees, etc., 

resulting from corrosion or aging.  

Additionally, failure to pump the medium (pump outlet low flow) may be caused by the following 

events: 

a. Insufficient opening level of the inlet valve. 

b. Blocked inlet filter. 

c. Gas remaining in the pump, because of the low density of the gas, the centrifugal force 

provided by impeller rotation is not enough to pump out the medium, which may lead to the 

low outlet flow.  

Another example of several causes independently resulting in one event can be seen from the 

steam turbine, a steam turbine converts thermal energy to mechanical energy. The steam turbine 

exhaust pressure is one of the principal indicators to measure the work of steam turbine. The lower 

exhaust pressure, the better work. For example, a particular equipment  steam turbine uses 3.5MPa 

steam as primary steam supply and 1.0MPa steam as auxiliary steam supply, to ensure the turbine 

vacuum. After getting through the turbine, 3.5MPa steam enters a fixed-tube-sheet heat exchanger 

which uses seawater as heater tubing medium and cools as condensation water. If there is an

abnormal high exhaust pressure of the steam turbine, it may be caused by the following events: 

a. Insufficient 1.0MPa steam pressure. 
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b. Leakage point in the pipeline.

c. Blocked heat exchanger pipeline, which will cause condensation effectiveness of 3.5MPa 

steam get worse.  

  Table 1 describes other possible events with their name and meaning. Table 2 explains several 

abbreviations.  

Table 1. Events for risk analysis of atmospheric and vacuum distillation unit 

Event Description State

1 AbHighP Abnormal high-discharge pressure of compressor Yes, No
2 AbPiP Abnormal pipeline pressure Yes, No
3 Aging Equipment aging Yes, No
4 AirLock Pump airlock Yes, No
5 AirMonitorFail Air monitor failure Yes, No
6 AirT Air temperature High, Nor., Low
7 BlockPi Blocked heat exchanger pipeline Yes, No
8 ClosingV Closing lye tank valve Yes, No
9 Corrosion Corrosion Yes, No

10 CVFreezing Tank pressure control valve freezing Yes, No
11 Damage Equipment damage Yes, No
12 DroponHighT Liquid drops on high-temperature heat exchanger Yes, No
13 EquipmentFail Equipment failure Yes, No
14 Fatigue Fatigue operator Yes, No
15 FeedSpeedFast Feeding speed too fast Yes, No
16 FilterB Inlet filter blocking Yes, No
17 Fire Fire Yes, No
18 GroupErr Group error Yes, No
19 HeaterT Heater temperature High, Nor., Low
20 HighPiT High pipeline temperature Yes, No
21 HighSourWT High sour wastewater temperature Yes, No
22 HighTaL High tank level Yes, No
23 HighTaP High tank pressure Yes, No
24 HumanErr Human error Yes, No
25 IndividualErr Individual error Yes, No
26 InPuDepletion Incomplete pump depletion Yes, No
27 InsExperience Insufficient experience of operator Yes, No
28 InsOpening Insufficient opening Yes, No
29 InsVOpening Insufficient inlet valve opening Yes, No
30 LossC Loss of control Yes, No
31 MixOilStain Cooling water mixed with heavy oil stain Yes, No
32 NoDecompression No decompression for pump Yes, No
33 OilJetting Oil jetting Yes, No
34 OilLeakage Oil leakage Yes, No
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35 OrganizationErr Organization error Yes, No
36 PiFracture Outlet pipeline elbow fracture Yes, No
37 PiLeakage Leakage point in pipeline Yes, No
38 PiW Water in pump outlet pipeline Yes, No
39 PMonitorFail Pressure monitor failure Yes, No
40 PowerCut Power cut Yes, No

41 PuHighTandP
Pump with high-temperature and high-pressure 
medium

Yes, No

42 PuMediumFail Pump medium failure Yes, No
43 PuRemainGas Remaining gas in pump Yes, No
44 PuStarting Pump required to start Yes, No
45 SafetySFail Safety and alarm system failure Yes, No
46 SafetyVFail Safety valve failure Yes, No
47 ShiftChange Shift change Yes, No
48 Shutdown Shutdown of unit Yes, No
49 SpoIgnition Spontaneous ignition High, Nor., Low
50 SteamP Steam pressure Yes, No
51 TaCrack Tank crack High, Nor., Low
52 TaOverflow Tank overflow Yes, No
53 TaT Tank temperature Yes, No
54 TaWS Open tank water curtain system Yes, No
55 ToxicGas Toxic gas release Yes, No
56 Vaporization Vaporization Yes, No
57 Volatilization Medium volatilization Yes, No
58 WOil Drain and cut off water with oil Yes, No

Table 2. Abbreviations in model
Term Abbr.

Abnormal Ab
Blocking B
Control C
Error Err

Failure Fail
Insufficient Ins

Level L
Normal Nor
Pipeline Pi
Pressure P

Pump Pu
System S
Tank Ta

Temperature T
Valve V
Water W
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Step 2: Establishing the structural model 

The identified possible events are then classified into three layers: cause, incident, and accident. 

On the basis of the identified relationships between the nodes, BNs are established for each layer. 

(1) Cause: In a petrochemical plant, several common events can cause accidents, three of which 

are summarized as follows. The first cause is mistakes caused by human error. This cause is the most 

influential factor because humans refer to subjective operators of the entire unit. Human error can be 

further divided into organizational, group, and individual errors. Shift change, inadequate knowledge 

and skills, poor management, high work stress, misunderstandings, and poor attitude may result in 

abnormal events. The second cause is equipment failure. All equipment has its reliability that shows 

that the facility is not entirely reliable. Sometimes, long time exposure, rain, and time may result in 

corrosion and aging; device failure or fracture may also happen. When these events happen, the 

probability of incidents increases. Adequate actions should be implemented immediately to prevent 

the further development of severe consequences. The third cause is nature. For example, excessively

low temperatures may cause medium freezing in the pump. Meanwhile, high ambient temperatures

may cause tank temperature rising, and the flammable matter in the tank (e.g., FeS) has the 

probability to self-ignite. Also, earthquakes, snow, wind, and thunder are also likely to contribute to 

equipment failure. Fig. 5 shows the BNs for the cause layer. 

Fig. 5. BNs for cause layer 

(2) Incident: Certain events happening in the plant can lead to more critical results than those 

causes previously described. Device abnormality can be considered an incident. Four parameters 

exist as the primary control parameters of the chemical process, namely, level, pressure, temperature, 

and flow. Individually, their abnormal values are incidents, such as a high level of a tank, which may 
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lead to spill, a high pressure of a pipeline or a vessel, a high temperature of the water tank, or low 

flow. Fig. 6 shows the BNs for the incident layer. 

Fig. 6. BNs for incident layer 

(3) Accident: The consequence of an accident is worse than that of others, especially in the 

chemical plant, although they do not occur frequently. Typical accidents are spills or leaks, fires, 

explosions, or vessel ruptures. All of them contribute to a substantial economic loss and can 

sometimes threaten human safety. Fig. 7 shows the BNs for the accident layer. 

Fig. 7. BNs for accident layer 
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For a child event, np (the number of prior probability) of independent entries in the CPT grows 

exponentially with the number of parents. np = mn, where m is the number of its states and n

represents the number of parent nodes it 2 

states ( ); therefore, m = 2. Moreover, this node has 4 parent nodes; thus, n = 4. Thus,

, np = mn = 24 = 16. For the complicated probability, the worst-case scenario can 

be overcome in the two following ways.  

(1) Noisy-OR

Four things can lead to taking  for example, InsVOpening , 

, , AirLock . They are . Table 3 

shows the . When only one cause happened, which means only one state of 

,

an independent failure probability (underlined in Table 3).  

Table 3. PuMediumFail
InsVOpening PuRemainGas FilterB AirLock Yes No

Yes Yes Yes Yes 99.64 0.36
Yes Yes Yes No 96.4 3.6
Yes Yes No Yes 98.2 1.8
Yes Yes No No 82 18
Yes No Yes Yes 99.4 0.6
Yes No Yes No 94 6
Yes No No Yes 97 3
Yes No No No 70 30
No Yes Yes Yes 98.8 1.2
No Yes Yes No 88 12
No Yes No Yes 94 6
No Yes No No 40 60
No No Yes Yes 98 2
No No Yes No 80 20
No No No Yes 90 10
No No No No 0 100

The expression formulas of the probabilities are as follows: 
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Then, other probabilities are calculated by these four independent failure probabilities. For 

example,  

.

Other probabilities follow the same rules. 

(2) Experience 

The relationship between parents and children is restricted in that conditional independencies exist 

between the nodes. For instance, if each node has no more than three parents, then a total number of 

possibility N < 8 n.  

For example, for LossC , three events lead to it: , , and 

. Table 4 shows the LossC .

LossC , the probability of state 

LossC  I  but 

LossC one of , the probabilities of 

LossC ning are 10% and 5%, respectively. If nothing ,

, , then LossC

Table 4. CPT LossC
CVFreezing HumanErr Aging Yes No

Yes Yes Yes 100 0
Yes Yes No 100 0
Yes No Yes 100 0
Yes No No 100 0
No Yes Yes 15 85
No Yes No 10 90
No No Yes 5 95
No No No 0 100

  Step 4: Performing inference analysis 

  After giving the CPT of each node, Netica is used to calculate the probability of each node by 

integrating all the probabilities. Fig. 8 shows the entire structure. Tables 5, 6, and 7 present the 

calculated results of each layer. 
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Fig. 8. BNs of the entire unit 
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Table 6. Probability of incident nodes at state Yes

Node Probability of state Yes (%) Basic node

AbHighP 5.47 No
AbPiP 5 Yes

AirLock 3.71 No
AirMonitorFail 2 Yes

BlockPi 2 Yes
ClosingV 99.8 No

CVFreezing 1 No
DroponHighT 5 Yes
FeedSpeedFast 1.39 No

FilterB 2 Yes
Heater - No

HighPiT 3.53 No
HighSourWT 1.88 No

HighTaL 1.07 No
HighTaP 0.55 No

LossC 1.37 No
MixOilStain 0.021 No

NoDecompression 1.25 No
InPuDepletion 1.13 No

InsOpening 5 Yes
InsVOpening 2 Yes

OilJetting 0.21 No
OilLeakage 1.45 No
PiFracture 1.21 No
PiLeakage 2 Yes

PiW 3.2 No
PMonitorFail 2 Yes
PuHighTandP 60 Yes
PuMediumFail 8.1 No
PuRemainGas 5 Yes

Damage 0.5 Yes
EquipmentFail 4.05 No

Fatigue 10 Yes
GroupErr 1.4 No
HumanErr 3.03 No

IndividualErr 0.69 No
InsExperience 10 Yes

OrganizationErr 0.5 Yes
PowerCut 0.5 Yes

ShiftChange 10 Yes
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PuStarting 95 Yes
SafetySFail 4.14 No
SafetyVFail 2 Yes

SteamP - Yes
TaOverflow 0.32 No

TaT - No
TaWS 9.58 No

Vaporization 2.89 No
Volatilization 4 No

WOil 0.46 No

Table 7. Probability of accident nodes at state Yes

Node Probability of state Yes (%) Basic node

Fire 0.31 No
Shutdown 0.072 No

SpoIgnition 0.018 No
TaCrack 0.95 No
ToxicGas 0.66 No

  Step 5: Validating the model

  Validation is used to illustrate that the model is a reasonable representation of an actual system. The 

model is supposed to satisfy the three axioms described in Section 2.2. For example, by increasing 

. Additionally, 

increases from 0.018% to 0.31%. Therefore, if an error occurs because of human operation, then 

these accidents may happen. Increasing each influencing node satisfies the axioms, thus partially

validating the model.  

  Other results from the model are presented in the following discussion. 

3.3.1 Risk analysis when finding evidence 

  When an accident occurs, its most probable cause must be determined. In the model, the 

, ToxicGas , are changed to 100%, 

which means they simulate the accidents happening. The probabilities of other nodes change 

accordingly. Fig. 9 shows the probabilities during a fire. Nodes with multiple changes in 
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probabilities changed are circled in red. Table 8 shows the probabilities of several nodes. Underlined 

numbers represent prior probabilities.

Fig. 9. Fire

Table 8. Probabilities when finding an evidence 
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Evidence
Probability (%)

Origin Fire ToxicGas TaCrack

Parent node

InsExperience 10 11.7 18.5 17.3
Fatigue 10 10.3 11.7 11.5

ShiftChange 10 11.3 16.8 15.9
Damage 0.5 1.72 6.75 0.5

PowerCut 0.5 1.31 4.66 0.5
Aging 1.5 3.17 10.1 10.2

Child node

HumanErr 3.03 14.2 59.7 51.9
IndividualErr 0.69 3.23 13.6 11.8

GroupErr 1.4 6.54 27.6 24
OrganizationErr 0.5 2.24 9.38 8.15
EquipmentFail 4.05 18.5 77.6 46

Corrosion 2.33 4.71 14.5 10.1

Accident

Fire 0.31 100 4.47 0.92
ToxicGas 0.072 1.04 100 0.79
TaCrack 0.018 0.054 0.2 100

SpoIgnition 0.95 2.09 6.77 7.25
Shutdown 0.66 0.66 0.66 0.62

  Fig. 10 shows the probabilities changing of several basic nodes when finding different evidence. 

For example, when  happens, InsExperience s probability increases the most. Thus, it is the 

most likely cause of the fire. When ToxicGas , InsExperience s probability significantly 

increases. ShiftChange  also increases considerably and hence, can be a possible and primary 

reason of ToxicGas . Similarly, when TaCrack  happens, InsExperience , ShiftChange,  and 

ging can be considered first as the possible reasons.

Fig. 10. Compared probabilities of basic nodes when an evidence is found 

  Fig. 11 shows the probabilities changing of several child nodes when finding different evidence. 

When ire , ToxicGas , or aCrack  happens,  and  are the most 

0

5

10

15

20
Origin
Fire
ToxicGas
TaCrack

Node name

P
ro

ba
bi

lit
y

(%
)



24

responsible. When ToxicGas  happens, the probability of  increases the most. 

Group error also has a relatively high probability responsible for the happening of ToxicGas

Fig. 11. Compared probabilities of several child nodes when an evidence is found 

3.3.2 Mutual information and variance of beliefs (VB) 

  Mutual information and VB show the relevance between one node and other nodes. By calculating 

the mutual information and VB, related events can be found. The calculation can also help find the 

most probable cause for one accident.  

We use Netica to calculate Mutual information and VB of SpoIgnition  with some basic nodes. 

Table 9 presents the result. Fig. 12 shows compared results for mutual information of the basic nodes. 

Fig. 13 shows VB of each basic node. These two figures show that air temperature is the most related 

event, which means that high ambient temperature is the most probable cause of spontaneous 

ignition. Therefore, during high-temperature days, operators should remain alert of the weather. In 

addition, the equipment should be cooled using a drencher system promptly to prevent spontaneous 

ignition.

Table 9. Sensitivity SpoIgnition
Basic Node Mutual Info Percent VB
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Fig. 12. SpoIgnition

Fig. 13. VB SpoIgnition

We use Netica to calculate Mutual information and VB of Shutdown  with some basic nodes. 

Table 10 presents the result. Fig. 14 shows compared results for mutual information of the basic 

nodes. Fig. 15 shows VB of each basic node. The results show that steam pressure is the most related 

event, which means that high steam pressure easily leads to an abnormally high discharge pressure of 

the compressor. This event is thus the most probable cause of Shutdown . Therefore, ensuring 

steam pressure stability is a relatively efficient way to prevent Shutdown .

  Besides steam pressure, other events influence the occurrence of Shutdown . Fig. 14 shows that by

mutual info, mutual i Shutdown

InsVOpening mutual info = 0.00101). On the contrary, Fig. 15 shows that by VB, the value of 
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results of the two parameters have only a small difference. Therefore, most of them are comparable, 

and the two parameters should be considered comprehensively. 

Table 10. Sensitivity Shutdown
Basic Node Mutual Info Percentage VBs

SteamP 0.00215 3.77 0.0000296
FilterB 0.00126 2.2 0.0000244

PuRemainGas 0.00103 1.8 0.0000149
InsVOpening 0.00101 1.78 0.0000186

AirT 0.00089 1.56 0.0000109
PiLeakage 0.00038 0.661 0.0000056
BlockPi 0.00038 0.661 0.0000056

PuStarting 0.00001 0.013 0.0000001

Fig. 14. Shutdown

Fig. 15. VB Shutdown
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3.3.3 Possible accident when an error occurs 

  Risk is best avoided by increasing reliability. However, mistakes are sometimes inevitable, and 

when an error occurs, people suffer adverse consequences. Simulation can show the situation in 

which people know that an error has happened and which accident is most likely to happen. In this 

case, operators can implement remedial measures to reduce risk. Table 11 gives the probability of 

several nodes when an error occurs. Underlined numbers represent the prior probabilities of 

identified causes.  

Table 11. Probability when finding an error 

Nodes
Probability (%)

Nature HumanErr OrganizationErr EquipmentFail

Parent 
node

InsExperience 10 24.5 10 18.6
Fatigue 10 12.9 10 11.7

ShiftChange 10 21.7 10 16.9
Damage 0.5 0.5 0.5 11.2

PowerCut 0.5 0.5 0.5 7.6
Aging 1.5 1.5 1.5 16.1

Child 
node

HumanErr 3.03 100 95.1 60.2
IndividualErr 0.69 22.8 0.69 13.7

GroupErr 1.4 46.2 1.4 27.8
OrganizationErr 0.5 15.7 100 9.45
EquipmentFail 4.05 80.3 76.5 100

Corrosion 2.33 2.33 2.33 23.1

Accident

Fire 0.31 1.46 1.4 1.42
ToxicGas 0.072 1.42 1.35 1.39
TaCrack 0.018 0.31 0.3 0.21

SpoIgnition 0.95 10.9 10.4 6.82
Shutdown 0.66 0.66 0.66 0.66

Figs. 16 and 17 compare and present the probabilities of these nodes to change with the causes. The 

different column colors in the bar chart represent various identified causes ( HumanErr,

OrganizationErr, and EquipmentFail ). The node names are on the horizontal coordinate, whereas 

the probabilities are on the vertical coordinate. In Fig. 16, the sixth column shows the occurrence of 

a human error (The .). The probability of operators 

to become fatigued Fatigue  is 12.9%.  

  Fig. 16 shows the probability changing of certain basic nodes when an error happens. When

happens, InsExperience  and ShiftChange  increase the most, this means that they 
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are the most likely reasons to result in human error. When EquipmentFail  happens, amage  and 

ging  increase the most; owerCut  also increases. These observations indicate these three 

events can be possible reasons for equipment failure. 

Fig. 16. Compared probabilities of basic nodes when an error is found 

  Fig. 17 shows the probabilities changing of certain child nodes when an error transpires. When 

 happens,  increases correspondingly. Human error may lead to 

equipment failure, according to the relationship shown in Fig. 8. 

Fig. 17. Compared probabilities of certain child nodes when an error is found 
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 Table 11 shows that when  occurs, the probability of  increases from 0.31% to 

1.46%. SpoIgnition , which increases from 0.95% to 10.9%, shows the most noticeable change. 

Therefore, when a human error happens, the temperature should be given special attention to prevent 

fire and spontaneous ignition.

4. Conclusions 

When a petrochemical accident materializes, it is more likely to have devastating consequences 

than other industries  accidents. A risk analysis model for petrochemical systems should, therefore,

be developed to help strengthen the relevant processes and improve safety. This work proposes a

BN-based risk analysis methodology, whose core features a three-layered hierarchical model. Then, 

the methodology is applied to a case study for validation. The conducted analyses lead to the 

following conclusions. 

(1) The case study application indicates the feasibility of the proposed methodology.  

(2) When evidence is found, the probability of other events changes accordingly. Insufficient 

experience is the most responsible for fires and toxic gas releases. For non-basic nodes, human error 

and equipment failure influence accidents the most.

(3) Mutual information and VB analysis show that air temperature is the most related event within 

our consideration to spontaneous ignition and steam pressure is the most related event within our 

consideration to shut-down. These parameters sometimes show slightly different results but have 

similar trends. This research suggests that the two parameters should be considered comprehensively. 

(4) When an error occurs, implementing timely and appropriate remedial measures can reduce risk 

to a certain extent. For example, when a human error happens, the probabilities of fire and 

spontaneous ignition increase substantially. Therefore, the temperature should be specially

monitored to avoid accidents.  

  Based on the conducted risk analysis, the following recommendations are given; 

(1) The reliability of workers should be increased, and the probability of human error should be 

reduced to prevent accidents because human error is the most influential event in the unit.  

(2) On the basis of the five steps in the proposed methodology, plant managers can conduct risk 

analysis combined with a practical evaluation of the on-site situation, establish structural and 
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parameter models, divide the model into three layers according to criticality, provide a probability 

for each event, and then calculate. The results can determine the weakest point and the most 

influential event, thus reducing risk efficiently. 
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