Vis enkel innførsel

dc.contributor.authorWeber, Kathrin
dc.contributor.authorLi, Tian
dc.contributor.authorLøvås, Terese
dc.contributor.authorSeidel, Lars
dc.contributor.authorPerlman, Cathleen
dc.contributor.authorMauss, Fabian
dc.date.accessioned2019-02-21T14:59:02Z
dc.date.available2019-02-21T14:59:02Z
dc.date.created2017-01-19T10:29:56Z
dc.date.issued2017
dc.identifier.citationJournal of Analytical and Applied Pyrolysis. 2017, 124 592-601.nb_NO
dc.identifier.issn0165-2370
dc.identifier.urihttp://hdl.handle.net/11250/2586858
dc.description.abstractIn this paper, a partially stirred stochastic reactor model is presented as an alternative for the modeling of biomass pyrolysis and gasification. Instead of solving transport equations in all spatial dimensions as in CFD simulations, the description of state variables and mixing processes is based on a probability density function, making this approach computationally efficient. The virtual stochastic particles, an ensemble of flow elements consisting of porous solid biomass particles and surrounding gas, mimic the turbulent exchange of heat and mass in practical systems without the computationally expensive resolution of spatial dimensions. Each stochastic particle includes solid phase, pore gas and bulk gas interaction. The reactor model is coupled with a chemical mechanism for both surface and gas phase reactions. A Monte Carlo algorithm with operator splitting is employed to obtain the numerical solution. Modeling an entrained flow gasification reactor demonstrates the applicability of the model for biomass fast pyrolysis and gasification. The results are compared with published experiments and detailed CFD simulations. The stochastic reactor model is able to predict all major species in the product gas composition very well for only a fraction of the computational time as needed for comprehensive CFD.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleStochastic reactor modeling of biomass pyrolysis and gasificationnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber592-601nb_NO
dc.source.volume124nb_NO
dc.source.journalJournal of Analytical and Applied Pyrolysisnb_NO
dc.identifier.doi10.1016/j.jaap.2017.01.003
dc.identifier.cristin1431782
dc.relation.projectNorges forskningsråd: 193817nb_NO
dc.relation.projectNorges forskningsråd: 228726nb_NO
dc.description.localcode© 2017. This is the authors’ accepted and refereed manuscript to the article. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal