The role of large - scale BECCS in the pursuit of the 1.5°C target – an Earth system model perspective
Journal article, Peer reviewed
Published version
View/ Open
Date
2018Metadata
Show full item recordCollections
Abstract
The increasing awareness of the many damaging aspects of climate change has prompted research into ways of reducing and reversing the anthropogenic increase in carbon concentrations in the atmosphere. Most emission scenarios stabilizing climate at low levels, such as the 1.5 °C target as outlined by the Paris Agreement, require large-scale deployment of Bio-Energy with Carbon Capture and Storage (BECCS). Here, the potential of large-scale BECCS deployment in contributing towards the 1.5 °C global warming target is evaluated using an Earth system model, as well as associated climate responses and carbon cycle feedbacks. The geographical location of the bioenergy feedstock is shown to be key to the success of such measures in the context of temperature targets. Although net negative emissions were reached sooner, by ~6 years, and scaled up, land use change emissions and reductions in forest carbon sinks outweigh these effects in one scenario. Re-cultivating mid-latitudes was found to be beneficial, on the other hand, contributing in the right direction towards the 1.5 °C target, only by −0.1 °C and −54 Gt C in avoided emissions, however. Obstacles remain related to competition for land from nature preservation and food security, as well as the technological availability of CCS.