Vis enkel innførsel

dc.contributor.authorAursand, Eskil
dc.contributor.authorDavis, Stephen H.
dc.contributor.authorYtrehus, Tor
dc.date.accessioned2019-02-14T12:20:17Z
dc.date.available2019-02-14T12:20:17Z
dc.date.created2018-08-03T14:50:57Z
dc.date.issued2018
dc.identifier.citationJournal of Fluid Mechanics. 2018, 852 283-312.nb_NO
dc.identifier.issn0022-1120
dc.identifier.urihttp://hdl.handle.net/11250/2585455
dc.description.abstractWe construct a model to investigate the interfacial stability of film boiling, and discover that instability of very thin vapour films and subsequent large interface superheating is only possible if thermocapillary instabilities are present. The model concerns horizontal saturated film boiling, and includes novel features such as non-equilibrium evaporation based on kinetic theory, thermocapillary and vapour thrust stresses and van der Waals interactions. From linear stability analysis applied to this model, we are led to suggest that vapour film collapse depends on a balance between thermocapillary instabilities and vapour thrust stabilization. This yields a purely theoretical prediction of the Leidenfrost temperature. Given that the evaporation coefficient is in the range 0.7–1.0, this model is consistent with the average Leidenfrost temperature of every fluid for which data could be found. With an evaporation coefficient of 0.85, the model can predict the Leidenfrost point within 10 % error for every fluid, including cryogens and liquid metals where existing models and correlations fail.nb_NO
dc.language.isoengnb_NO
dc.publisherCambridge University Pressnb_NO
dc.titleThermocapillary instability as a mechanism for film boiling collapsenb_NO
dc.title.alternativeThermocapillary instability as a mechanism for film boiling collapsenb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber283-312nb_NO
dc.source.volume852nb_NO
dc.source.journalJournal of Fluid Mechanicsnb_NO
dc.identifier.doi10.1017/jfm.2018.545
dc.identifier.cristin1599672
dc.relation.projectNorges forskningsråd: 244076nb_NO
dc.description.localcode© 2018. This is the authors' accepted and refereed manuscript to the article. The final authenticated version is available online at: https://doi.org/10.1017/jfm.2018.545nb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel