dc.contributor.author | Galtung, Sondre Tesdal | |
dc.date.accessioned | 2019-02-11T13:18:31Z | |
dc.date.available | 2019-02-11T13:18:31Z | |
dc.date.created | 2018-06-26T03:01:04Z | |
dc.date.issued | 2018 | |
dc.identifier.isbn | 978-3-319-91545-6 | |
dc.identifier.uri | http://hdl.handle.net/11250/2584813 | |
dc.description.abstract | We consider a recently proposed fully discrete Galerkin scheme for the Benjamin–Ono equation which has been found to be locally convergent in finite time for initial data in L 2 (R). By assuming that the initial data is sufficiently regular we obtain theoretical convergence rates for the scheme both in the full line and periodic versions of the associated initial value problem. These rates are illustrated with some numerical examples. | nb_NO |
dc.language.iso | eng | nb_NO |
dc.publisher | Springer Verlag | nb_NO |
dc.relation.ispartof | Theory, Numerics and Applications of Hyperbolic Problems I | |
dc.relation.uri | https://doi.org/10.1007/978-3-319-91545-6_45 | |
dc.title | Convergence Rates of a Fully Discrete Galerkin Scheme for the Benjamin–Ono Equation | nb_NO |
dc.title.alternative | Convergence Rates of a Fully Discrete Galerkin Scheme for the Benjamin–Ono Equation | nb_NO |
dc.type | Chapter | nb_NO |
dc.description.version | submittedVersion | nb_NO |
dc.source.pagenumber | 589-601 | nb_NO |
dc.identifier.doi | 10.1007/978-3-319-91545-6_45 | |
dc.identifier.cristin | 1593869 | |
dc.description.localcode | This is a pre-print of an article published in [Theory, Numerics and Applications of Hyperbolic Problems I]. The final authenticated version is available online at: https://doi.org/10.1007/978-3-319-91545-6_45 | nb_NO |
cristin.unitcode | 194,63,15,0 | |
cristin.unitname | Institutt for matematiske fag | |
cristin.ispublished | true | |
cristin.fulltext | preprint | |
cristin.qualitycode | 1 | |