Show simple item record

dc.contributor.authorGaltung, Sondre Tesdal
dc.date.accessioned2019-02-11T13:18:31Z
dc.date.available2019-02-11T13:18:31Z
dc.date.created2018-06-26T03:01:04Z
dc.date.issued2018
dc.identifier.isbn978-3-319-91545-6
dc.identifier.urihttp://hdl.handle.net/11250/2584813
dc.description.abstractWe consider a recently proposed fully discrete Galerkin scheme for the Benjamin–Ono equation which has been found to be locally convergent in finite time for initial data in L 2 (R). By assuming that the initial data is sufficiently regular we obtain theoretical convergence rates for the scheme both in the full line and periodic versions of the associated initial value problem. These rates are illustrated with some numerical examples.nb_NO
dc.language.isoengnb_NO
dc.publisherSpringer Verlagnb_NO
dc.relation.ispartofTheory, Numerics and Applications of Hyperbolic Problems I
dc.relation.urihttps://doi.org/10.1007/978-3-319-91545-6_45
dc.titleConvergence Rates of a Fully Discrete Galerkin Scheme for the Benjamin–Ono Equationnb_NO
dc.title.alternativeConvergence Rates of a Fully Discrete Galerkin Scheme for the Benjamin–Ono Equationnb_NO
dc.typeChapternb_NO
dc.description.versionsubmittedVersionnb_NO
dc.source.pagenumber589-601nb_NO
dc.identifier.doi10.1007/978-3-319-91545-6_45
dc.identifier.cristin1593869
dc.description.localcodeThis is a pre-print of an article published in [Theory, Numerics and Applications of Hyperbolic Problems I]. The final authenticated version is available online at: https://doi.org/10.1007/978-3-319-91545-6_45nb_NO
cristin.unitcode194,63,15,0
cristin.unitnameInstitutt for matematiske fag
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record