Nanomechanical Characterization of Single Micron-Sized Polymer Particles
Journal article, Peer reviewed
Published version
Date
2009Metadata
Show full item recordCollections
Abstract
The mechanical characterization of single micron‐sized polymer particles is very important for understanding the anisotropic conductive adhesives interconnection. In this article, a nanoindentation‐based flat punch method was employed to investigate the mechanical properties of single polymer particles. A diamond flat tip, instead of a commonly used sharp tip for indentation, was specially designed to deform single polymer particles. The maximum applied load is 10 mN and the linear loading/unloading rate is 2 mN/s. Two types of amorphous polymer particles were examined. The polymer particles display significantly different stress–strain behaviors. The material responses at different strain levels were analyzed and compared. A particle size effect, the smaller the diameter, the harder the particle, on the compression stress–strain behavior, was observed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009