Vis enkel innførsel

dc.contributor.authorRibicic, Deni
dc.contributor.authorNetzer, Roman
dc.contributor.authorHazen, Terry C.
dc.contributor.authorTechtmann, Stephen M.
dc.contributor.authorDrabløs, Finn
dc.contributor.authorBrakstad, Odd Gunnar
dc.date.accessioned2019-01-16T12:50:27Z
dc.date.available2019-01-16T12:50:27Z
dc.date.created2018-03-25T00:17:21Z
dc.date.issued2018
dc.identifier.citationMarine Pollution Bulletin. 2018, 129 (1), 370-378.nb_NO
dc.identifier.issn0025-326X
dc.identifier.urihttp://hdl.handle.net/11250/2580900
dc.description.abstractOil biodegradation as a weathering process has been extensively investigated over the years, especially after the Deepwater Horizon blowout. In this study, we performed microcosm experiments at 5 °C with chemically dispersed oil in non-amended seawater. We link biodegradation processes with microbial community and metagenome dynamics and explain the succession based on substrate specialization. Reconstructed genomes and 16S rRNA gene analysis revealed that Bermanella and Zhongshania were the main contributors to initial n-alkane breakdown, while subsequent abundances of Colwellia and microorganisms closely related to Porticoccaceae were involved in secondary n‑alkane breakdown and beta‑oxidation. Cycloclasticus, Porticoccaceae and Spongiiabcteraceae were associated with degradation of mono- and poly-cyclic aromatics. Successional pattern of genes coding for hydrocarbon degrading enzymes at metagenome level, and reconstructed genomic content, revealed a high differentiation of bacteria involved in hydrocarbon biodegradation. A cooperation among oil degrading microorganisms is thus needed for the complete substrate transformation.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleMicrobial community and metagenome dynamics during biodegradation of dispersed oil reveals potential key-players in cold Norwegian seawaternb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.subject.nsiVDP::Miljøteknologi: 610nb_NO
dc.subject.nsiVDP::Environmental engineering: 610nb_NO
dc.source.pagenumber370-378nb_NO
dc.source.volume129nb_NO
dc.source.journalMarine Pollution Bulletinnb_NO
dc.source.issue1nb_NO
dc.identifier.doi10.1016/j.marpolbul.2018.02.034
dc.identifier.cristin1575569
dc.relation.projectNorges forskningsråd: 228271nb_NO
dc.description.localcode© 2018. This is the authors’ accepted and refereed manuscript to the article. Locked until 23.3.2020 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,65,15,0
cristin.unitnameInstitutt for klinisk og molekylær medisin
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal