Vis enkel innførsel

dc.contributor.authorScheffler, Katja
dc.contributor.authorRachek, Lyudmila
dc.contributor.authorYou, Panpan
dc.contributor.authorRowe, Alexander D.
dc.contributor.authorWang, Wei
dc.contributor.authorKuśnierczyk, Anna
dc.contributor.authorKittelsen, Lene Svendsen
dc.contributor.authorBjørås, Magnar
dc.contributor.authorEide, Lars
dc.date.accessioned2019-01-09T12:35:54Z
dc.date.available2019-01-09T12:35:54Z
dc.date.created2018-02-19T12:51:20Z
dc.date.issued2018
dc.identifier.citationDNA Repair. 2018, 61 56-62.nb_NO
dc.identifier.issn1568-7864
dc.identifier.urihttp://hdl.handle.net/11250/2579955
dc.description.abstractMitochondrial DNA (mtDNA) resides in close proximity to metabolic reactions, and is maintained by the 8-oxoguanine DNA glycosylase (Ogg1) and other members of the base excision repair pathway. Here, we tested the hypothesis that changes in liver metabolism as under fasting/feeding conditions would be sensed by liver mtDNA, and that Ogg1 deficient mice might unravel a metabolic phenotype. Wild type (WT) and ogg1−/− mice were either fed ad libitum or subjected to fasting for 24 h, and the corresponding effects on liver gene expression, DNA damage, as well as serum values were analyzed. Ogg1 deficient mice fed ad libitum exhibited hyperglycemia, elevated insulin levels and higher liver glycogen content as well as increased accumulation of 8oxoG in mtDNA compared to age- and gender matched WT mice. Interestingly, these phenotypes were absent in ogg1−/− mice during fasting. Gene expression and functional analyses suggest that the diabetogenic phenotype in the ogg1−/− mice is due to a failure to suppress gluconeogensis in the fed state. The ogg1−/− mice exhibited reduced mitochondrial electron transport chain (ETC) capacity and a combined low activity of the pyruvate dehydrogenase (PDH), alluding to inefficient channeling of glycolytic products into the citric acid cycle. Our data demonstrate a physiological role of base excision repair that goes beyond DNA maintenance, and implies that DNA repair is involved in regulating metabolism.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.title8-oxoguanine DNA glycosylase (Ogg1) controls hepatic gluconeogenesisnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber56-62nb_NO
dc.source.volume61nb_NO
dc.source.journalDNA Repairnb_NO
dc.identifier.doi10.1016/j.dnarep.2017.11.008
dc.identifier.cristin1566541
dc.description.localcode© 2017. This is the authors’ accepted and refereed manuscript to the article. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,65,15,0
cristin.unitnameInstitutt for klinisk og molekylær medisin
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal