Vis enkel innførsel

dc.contributor.authorTaxt, Henning
dc.contributor.authorNiayesh, Kaveh
dc.contributor.authorRunde, Magne
dc.date.accessioned2019-01-04T12:43:13Z
dc.date.available2019-01-04T12:43:13Z
dc.date.created2019-01-03T10:37:08Z
dc.date.issued2019
dc.identifier.issn0885-8977
dc.identifier.urihttp://hdl.handle.net/11250/2579228
dc.description.abstractAblation-assisted current interruption is a candidate for improving interruption capability in medium voltage switchgear. In high voltage switchgear, ablation is utilized to achieve high pressures in self-blast circuit breakers. Self-blast switch technology adapted to medium voltage could represent an attractive alternative to SF 6 technology in load current interruption. However, the arc energies involved would be much lower than in fault current interruption, where self-blast technology is traditionally employed, and to achieve sufficient pressure buildup, this must be compensated for. Higher pressure could be achieved by reducing the radius or increasing the length of the nozzle throat, reducing the heating volume size, changing or increasing the amount of ablative material, or restricting the outward gas flow. Interruption experiments in air have been performed on four different model switch designs that are meant to highlight the possibilities and challenges of adapting self-blast technology to medium voltage load current interruption. The results show that typical load currents can be interrupted at 24 kV, but below a certain critical current, in the present case 200 A, interruptions fail. Self-blast technology could prove useful in medium voltage load current interruption in the future, provided a method for interrupting the lowest currents can be found.nb_NO
dc.language.isoengnb_NO
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)nb_NO
dc.titleSelf-blast Current Interruption and Adaption to Medium Voltage Load Current Switchingnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.journalIEEE Transactions on Power Deliverynb_NO
dc.identifier.doi10.1109/TPWRD.2018.2890306
dc.identifier.cristin1649307
dc.description.localcode© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.nb_NO
cristin.unitcode194,63,20,0
cristin.unitnameInstitutt for elkraftteknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel