• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

High pseudomoments of the Riemann zeta function

Brevig, Ole Fredrik; Heap, Winston
Journal article
Submitted version
Thumbnail
View/Open
1805.03881.pdf (313.5Kb)
URI
http://hdl.handle.net/11250/2577870
Date
2018
Metadata
Show full item record
Collections
  • Institutt for matematiske fag [2672]
  • Publikasjoner fra CRIStin - NTNU [41869]
Original version
Journal of Number Theory. 2019, 197 383-410.   10.1016/j.jnt.2018.10.001
Abstract
The pseudomoments of the Riemann zeta function, denoted Mk(N), are defined as the 2kth integral moments of the Nth partial sum of ζ(s) on the critical line. We improve the upper and lower bounds for the constants in the estimate Mk(N) ≍k (log N) k 2 as N → ∞ for fixed k ≥ 1, thereby determining the two first terms of the asymptotic expansion. We also investigate uniform ranges of k where this improved estimate holds and when Mk(N) may be lower bounded by the 2kth power of the L ∞ norm of the Nth partial sum of ζ(s) on the critical line.
Publisher
Elsevier
Journal
Journal of Number Theory

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit