Show simple item record

dc.contributor.authorGrunert, Katrin
dc.contributor.authorNordli, Anders Samuelsen
dc.date.accessioned2018-12-12T11:41:34Z
dc.date.available2018-12-12T11:41:34Z
dc.date.created2018-10-03T09:49:45Z
dc.date.issued2018
dc.identifier.citationJournal of Hyperbolic Differential Equations. 2018, 15 (3), 559-597.nb_NO
dc.identifier.issn0219-8916
dc.identifier.urihttp://hdl.handle.net/11250/2577353
dc.description.abstractWe establish the concept of α-dissipative solutions for the two-component Hunter–Saxton system under the assumption that either α(x)=1 or 0≤α(x)<1 for all x∈R. Furthermore, we investigate the Lipschitz stability of solutions with respect to time by introducing a suitable parametrized family of metrics in Lagrangian coordinates. This is necessary due to the fact that the solution space is not invariant with respect to time.nb_NO
dc.language.isoengnb_NO
dc.publisherWorld Scientific Publishing&nbsp;nb_NO
dc.titleExistence and Lipschitz stability for α-dissipative solutions of the two-component Hunter–Saxton systemnb_NO
dc.title.alternativeExistence and Lipschitz stability for α-dissipative solutions of the two-component Hunter–Saxton systemnb_NO
dc.typeJournal articlenb_NO
dc.description.versionsubmittedVersionnb_NO
dc.source.pagenumber559-597nb_NO
dc.source.volume15nb_NO
dc.source.journalJournal of Hyperbolic Differential Equationsnb_NO
dc.source.issue3nb_NO
dc.identifier.doi10.1142/S0219891618500182
dc.identifier.cristin1617443
dc.relation.projectNorges forskningsråd: 250070nb_NO
dc.description.localcodePreprint of an article published in [Journal of Hyperbolic Differential Equations Vol. 15, No. 03, pp. 559-597 (2018)] [https://doi.org/10.1142/S0219891618500182] © [copyright World Scientific Publishing Company]nb_NO
cristin.unitcode194,63,15,0
cristin.unitnameInstitutt for matematiske fag
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.fulltextoriginal
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record