Vis enkel innførsel

dc.contributor.authorZhao, Kai
dc.contributor.authorMayer, A. E.
dc.contributor.authorHe, Jianying
dc.contributor.authorZhang, Zhiliang
dc.date.accessioned2018-12-12T09:40:34Z
dc.date.available2018-12-12T09:40:34Z
dc.date.created2018-09-01T22:26:27Z
dc.date.issued2018
dc.identifier.citationInternational Journal of Mechanical Sciences. 2018, 148 158-173.nb_NO
dc.identifier.issn0020-7403
dc.identifier.urihttp://hdl.handle.net/11250/2577309
dc.description.abstractUnderstanding plasticity initiation and evolution in nanoindentation tests is a fundamental issue. In this study, a continuum model is developed to analytically predict the force-depth curve by coupling the classical Hertzian solution for elastic field and the evolution of dislocation density. By considering multiple slip systems, the present model predicts the “pop-in” event well. Large-scale molecular dynamics simulations are performed to evaluate the mechanical behavior of bcc Fe under nanoindentation of a spherical indenter and to verify the continuum model. The comparison between molecular dynamics simulations and model predictions shows that the initiation and evolution of dislocation networks is strongly dependent on the loading orientation, which is associated with different deformation patterns. Applying the transition state theory, we investigate the slip-twinning transition as a function of loading rate, which supports the basic hypothesis in the continuum model that the activation of shear loop requires lower energy compared with twin nucleation, although twins can nucleate temporally and annihilate into shear loops finally. The present model provides a general framework to evaluate and rationalize the “pop-in” behavior of any materials with elastoplastic response.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.titleDislocation based plasticity in the case of nanoindentationnb_NO
dc.title.alternativeDislocation based plasticity in the case of nanoindentationnb_NO
dc.typeJournal articlenb_NO
dc.description.versionsubmittedVersionnb_NO
dc.source.pagenumber158-173nb_NO
dc.source.volume148nb_NO
dc.source.journalInternational Journal of Mechanical Sciencesnb_NO
dc.identifier.doi10.1016/j.ijmecsci.2018.08.038
dc.identifier.cristin1606032
dc.relation.projectNotur/NorStore: NN9391Knb_NO
dc.relation.projectNotur/NorStore: NN9110Knb_NO
dc.relation.projectNorges forskningsråd: 234130nb_NO
dc.description.localcodeThis is a submitted manuscript of an article published by Elsevier Ltd in International Journal of Mechanical Sciences, 31 August 2018nb_NO
cristin.unitcode194,64,45,0
cristin.unitnameInstitutt for konstruksjonsteknikk
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel