Vis enkel innførsel

dc.contributor.advisorLandrø, Martin
dc.contributor.advisorJohansen, Ståle Emil
dc.contributor.authorKhodabandeloo, Babak
dc.date.accessioned2018-09-25T11:53:53Z
dc.date.available2018-09-25T11:53:53Z
dc.date.issued2018
dc.identifier.isbn978-82-326-3269-5
dc.identifier.issn1503-8181
dc.identifier.urihttp://hdl.handle.net/11250/2564378
dc.description.abstractMarine seismic air-gun arrays generate not only low-frequency (<∼300 Hz) acoustic waves which benefit seismic imaging, but also high-frequencies up to tens of kilohertz. Although such high-frequencies are much weaker than the lowfrequency parts, they might impact cetacean species that are sensitive to acoustic signals in the high-frequency range (10−150 kHz). Ghost cavitation is believed to be the main underlying mechanism for such high-frequency (>10 kHz) acoustic signals. In this doctoral thesis, ghost cavitation phenomenon is studied through numerical modeling and field measurements. Ghost cavity cloud consists of several acoustically induced cavities which are formed due to the pressure drop caused by reflected pressure waves, i.e. ghost, from the sea surface. The thesis is a collection of several independent papers organized in chapters together with an introductory part (chapter 1) which reviews the key concepts that are relevant as background and motivation for the work presented. In chapter 2, A synthetic modeling scheme for simulation of acoustically induced cavitation in seismic air-gun arrays is developed. The growth and subsequent collapse of individual cavities around the array are modeled by bubble dynamic equations. The pressure fields generated by individual cavities are added to model the acoustic signal form the cavity cloud. To validate the modeling technique, the simulation results are compared to the field recorded data. In chapter 3, using the numerical modeling scheme, high-frequency emissions caused by ghost cavitation for two different air-gun arrays are compared. The developed numerical scheme has the potential to evaluate air-gun arrays regarding the amount of high-frequency ghost cavitation acoustic signal. In chapter 4, photographed ghost cavity cloud by a high-speed video camera in a field experiment are presented which provide an undebatable evidence of the phenomenon. Furthermore, the modeling scheme for the cavity cloud is further evaluated. In chapter 5, sound velocity within the cavity cloud was investigated using a kspace pseudo-spectral numerical method. Presence of several small vapor cavities has potential to significantly drop the sound speed of water within the cavity cloud at frequencies below the resonance frequencies of the cavities. It is shown that if the sound velocity drops within the cavity cloud, though for a short time (8-10ms), it affects the far-field acoustic pressure. In the appendix, the effects of cavity collapses within the ghost cavity cloud on the near-field hydrophones are simulated. In this paper, the model is tuned (calibrated) such that both the amplitude of the high-frequency modeled signal and its associated low-frequency part match the measurements.nb_NO
dc.language.isoengnb_NO
dc.publisherNTNUnb_NO
dc.relation.ispartofseriesDoctoral theses at NTNU;2018:239
dc.relation.haspartKhodabandeloo, Babak; Landrø, Martin; Hanssen, Alfred. Acoustic generation of underwater cavities - Comparing modeled and measured acoustic signals generated by seismic air gun arrays. Journal of the Acoustical Society of America 2017 ;Volum 141.(4) s. 2661-2672 https://doi.org/10.1121/1.4979939 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) licensenb_NO
dc.relation.haspartKhodabandeloo, Babak; Landrø, Martin. High frequency ghost cavitation - a comparison of two seismic air-gun arrays using numerical modeling. Energy Procedia 2017 ;Volum 125. s. 153-160 https://doi.org/10.1016/j.egypro.2017.08.158 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)nb_NO
dc.relation.haspartKhodabandeloo, Babak; Landrø, Martin. Acoustically induced cavity cloud generated by air-gun arrays—Comparing video recordings and acoustic data to modeling. Journal of the Acoustical Society of America 2018 ;Volum 143.(6) s. 3383-3393 https://doi.org/10.1121/1.5040490 Copyright 2018 Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America.nb_NO
dc.relation.haspartCharacterizing acoustic properties of cavity cloud as a time-dependent effective medium surrounding an air-gun arraynb_NO
dc.relation.haspartKhodabandeloo, Babak; Landrø, Martin. Effects of ghost cavitation cloud on near-field hydrophone measurements in the seismic air gun arrays. 79th EAGE Conference and Exhibition 2017 https//doi.org/10.3997/2214-4609.201700845nb_NO
dc.titleModeling and characterizing acoustic signals from cavity clouds generated by marine seismic air-gun arrays: Implications for marine mammalsnb_NO
dc.typeDoctoral thesisnb_NO
dc.subject.nsiVDP::Technology: 500::Rock and petroleum disciplines: 510::Petroleum engineering: 512nb_NO


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel