• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of a Biosensor Concept to Detect the Production of Cluster-Specific Secondary Metabolites

Sun, Yi-Qian; Busche, Tobias; Rückert, Christian; Paulus, Constanze; Rebets, Yuriy; Novakova, Renata; Kalinowski, Jörn; Luzhetskyy, Andriy; Kormanec, Jan; Sekurova, Olga N.; Zotchev, Sergey B.
Journal article, Peer reviewed
Accepted version
Thumbnail
View/Open
Reporter_system_ACS_SynBio_postprint.pdf (624.7Kb)
URI
http://hdl.handle.net/11250/2559429
Date
2017
Metadata
Show full item record
Collections
  • Institutt for klinisk og molekylær medisin [2069]
  • Publikasjoner fra CRIStin - NTNU [20888]
Original version
ACS Synthetic Biology. 2017, 6 (6), 1026-1033.   10.1021/acssynbio.6b00353
Abstract
Genome mining of actinomycete bacteria aims at the discovery of novel bioactive secondary metabolites that can be developed into drugs. A new repressor-based biosensor to detect activated secondary metabolite biosynthesis gene clusters in Streptomyces was developed. Biosynthetic gene clusters for undecylprodigiosin and coelimycin in the genome of Streptomyces lividans TK24, which encoded TetR-like repressors and appeared to be almost "silent" based on the RNA-seq data, were chosen for the proof-of-principle studies. The bpsA reporter gene for indigoidine synthetase was placed under control of the promotor/operator regions presumed to be controlled by the cluster-associated TetR-like repressors. While the biosensor for undecylprodigiosin turned out to be nonfunctional, the coelimycin biosensor was shown to perform as expected, turning on biosynthesis of indigoidine in response to the concomitant production of coelimycin. The developed reporter system concept can be applied to those cryptic gene clusters that encode metabolite-sensing repressors to speed up discovery of novel bioactive compounds in Streptomyces.
Publisher
American Chemical Society
Journal
ACS Synthetic Biology

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit