• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for elkraftteknikk
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for elkraftteknikk
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tackling Variability in Renewable Energy Production and Electric Vehicle Consumption with Stochastic Optimization - The Benefits of Using the Stochastic Quasi-Gradient Method compared with Exact Methods and Machine Learning

Harbo, Sondre Flinstad
Master thesis
Thumbnail
View/Open
20052_FULLTEXT.pdf (5.113Mb)
20052_ATTACHMENT.zip (119.3Mb)
20052_COVER.pdf (1.682Mb)
URI
http://hdl.handle.net/11250/2507657
Date
2018
Metadata
Show full item record
Collections
  • Institutt for elkraftteknikk [2646]
Abstract
The work presented in thesis investigates different applications for implementing the Stochastic- Quasi Gradient (SQG) model to solve stochastic multistage AC-OPF problems, and com- pares it with a Stochastic-Dynamic Programming (SDP) approach and an Evolutionary algorithm.

Where the SDP quickly becomes too cumbersome to solve, the thesis also shows the other two as more appropriate tools, where the SQG method works better in larger cases, the Evolutionary algorithm in smaller.

Hence, to analyze how energy storage may optimally be used for incorporating variable renewable energy sources to bigger grid networks, the SQG method may be of academic and practical interest.
Publisher
NTNU

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit