Vis enkel innførsel

dc.contributor.authorCaenen, Annette
dc.contributor.authorPernot, Mathieu
dc.contributor.authorEkroll, Ingvild Kinn
dc.contributor.authorShcherbakova, Darya
dc.contributor.authorMertens, Luc
dc.contributor.authorSwillens, Abigail Emily
dc.contributor.authorSegers, Patrick
dc.date.accessioned2018-06-18T11:10:52Z
dc.date.available2018-06-18T11:10:52Z
dc.date.created2017-09-05T15:11:43Z
dc.date.issued2017
dc.identifier.citationApplied Sciences. 2017, 7(8).nb_NO
dc.identifier.issn2076-3417
dc.identifier.urihttp://hdl.handle.net/11250/2501886
dc.description.abstractPlane wave imaging in Shear Wave Elastography (SWE) captures shear wave propagation in real-time at ultrafast frame rates. To assess the capability of this technique in accurately visualizing the underlying shear wave mechanics, this work presents a multiphysics modeling approach providing access to the true biomechanical wave propagation behind the virtual image. This methodology was applied to a pediatric ventricular model, a setting shown to induce complex shear wave propagation due to geometry. Phantom experiments are conducted in support of the simulations. The model revealed that plane wave imaging altered the visualization of the shear wave pattern in the time (broadened front and negatively biased velocity estimates) and frequency domain (shifted and/or decreased signal frequency content). Furthermore, coherent plane wave compounding (effective frame rate of 2.3 kHz) altered the visual appearance of shear wave dispersion in both the experiment and model. This mainly affected stiffness characterization based on group speed, whereas phase velocity analysis provided a more accurate and robust stiffness estimate independent of the use of the compounding technique. This paper thus presents a versatile and flexible simulation environment to identify potential pitfalls in accurately capturing shear wave propagation in dispersive settings.nb_NO
dc.language.isoengnb_NO
dc.publisherMDPI AGnb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleEffect of Ultrafast Imaging on Shear Wave Visualization and Characterization: An Experimental and Computational Study in a Pediatric Ventricular Modelnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber17nb_NO
dc.source.volume7nb_NO
dc.source.journalApplied Sciencesnb_NO
dc.source.issue8nb_NO
dc.identifier.doi10.3390/app7080840
dc.identifier.cristin1491159
dc.description.localcode© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).nb_NO
cristin.unitcode194,65,25,0
cristin.unitnameInstitutt for sirkulasjon og bildediagnostikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal