• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Controlling the self-assembly and optical properties of gold nanoclusters and gold nanoparticles biomineralized with bovine serum albumin

McDonagh, Birgitte Hjelmeland; Singh, Gurvinder; Bandyopadhyay, Sulalit; Lystvet, Sina Maria; Ryan, Joseph Anthony; Volden, Sondre; Kim, Eugene; Sandvig, Ioanna; Sandvig, Axel; Glomm, Wilhelm
Journal article, Peer reviewed
Published version
View/Open
1292773.pdf (Locked)
URI
http://hdl.handle.net/11250/2497495
Date
2015
Metadata
Show full item record
Collections
  • Institutt for kjemisk prosessteknologi [1236]
  • Institutt for materialteknologi [1601]
  • Publikasjoner fra CRIStin - NTNU [20734]
Original version
RSC Advances. 2015, 5 (122), 101101-101109.   10.1039/c5ra23423a
Abstract
While the size-dependent optical properties of BSA-stabilized gold nanoclusters are well known, the time-dependent growth mechanism remains to be described. Herein, we systematically compare two synthesis methods with and without ascorbic acid, and show that tuning of BSA-stabilized gold nanoclusters (AuNCs) of different sizes can be performed without the aid of an extrinsic reducing agent and with good reproducibility. We also show that adding ascorbic acid yields larger BSA-stabilized gold nanoparticles (AuNPs), and that AuNPs can only form above a threshold gold precursor concentration. Using computed tomography, we describe how these biomineralized AuNPs show size-dependent X-ray attenuation. Growth of BSA-stabilized AuNCs and AuNPs, over a range of gold precursor concentrations, was followed with steady-state fluorescence and UV-vis spectroscopy for one week, constituting the first study of its kind. Based on our results, we propose a mechanism for BSA-stabilization of AuNCs and AuNPs that can further aid in selective growth of discrete AuNCs and AuNPs.
Publisher
Royal Society of Chemistry
Journal
RSC Advances

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit