Maximum velocity estimation in coronary arteries using 3D tracking Doppler
Fiorentini, Stefano; Saxhaug, Lars Mølgaard; Holte, Espen; Bjåstad, Tore Grüner; Torp, Hans; Avdal, Jørgen
Original version
10.1109/TUFFC.2018.2827241Abstract
Several challenges currently prevent the use of Doppler echocardiography to assess blood flow in the coronary arteries. Due to the anatomy of the coronary tree, out-of-plane flow and high beam-to-flow angles easily occur. Transit time broadening in regions with high velocities leads to overestimation of the maximum velocity envelope, which is a standard clinical parameter for flow quantification. In this work, a commercial ultrasound system was locally modified to perform trans-thoracic, 3D high frame-rate imaging of the coronary arteries. The imaging sequence was then combined with 3D tracking Doppler for retrospective estimation of maximum velocities. Results from simulations showed that 3D tracking Doppler delivers sonograms with better velocity resolution and spectral SNR compared to conventional PW Doppler. Results were confirmed using in vitro recordings. Further simulations based on realistic coronary flow data showed that 3D tracking Doppler can provide improved performance compared to PW Doppler, suggesting a potential benefit on patients. In vivo feasibility of the method was also shown in a healthy volunteer.