Vis enkel innførsel

dc.contributor.authorNielsen, Torbjørn Kristian
dc.contributor.authorStorli, Pål-Tore Selbo
dc.date.accessioned2018-03-27T07:43:31Z
dc.date.available2018-03-27T07:43:31Z
dc.date.created2014-12-11T08:48:04Z
dc.date.issued2014
dc.identifier.citationIOP Conference Series: Earth and Environment. 2014, 22 (4), .nb_NO
dc.identifier.issn1755-1307
dc.identifier.urihttp://hdl.handle.net/11250/2492179
dc.description.abstractSpeed droop control is of basic importance for the primary governing in the Nordic grid. The speed droop control. a mandatory and build-in regulatory loop on all larger units. is automatically changing the produced power on synchronous units as the grid frequency changes. This part of the governor allows a certain deviance from the nominal 50 Hz grid frequency. If the grid frequency is decreasing this means that the load on the grid is greater than the power delivered into the grid. and the local speed droop regulatory loop on each unit then autonomously increases the production to obtain a new balance between load and production. which will be at a lower frequency than 50 Hz. If the power delivered into the grid is greater than the load. the rotating masses will be accelerated (thus increasing the grid frequency) and the speed droop operation will act to reduce the power produced to obtain a new balance. this time at a higher frequency than 50 Hz. The frequency in the Nordic power grid has in recent years for increasing duration been outside the allowed steady state frequency band of 50 ± 0.1 Hz. In order to study the behaviour of a turbine operating on a common grid, measurements have been done at site. The measurements performed are the generator power, main servo motor position, the rotational speed of the unit and the grid frequency. The purpose of the measurements was to see if it is possible to observe the behaviour of the machine as it is linked together with all the other machines on a synchronous grid. It is interesting to observe the response to deviations in the frequency due to the speed droop operation. In order to better understand the behaviour, a simulation model of two power plants, complete with individual conduit system, turbine and generator, connected to the same grid was used.nb_NO
dc.language.isoengnb_NO
dc.publisherIOP Publishingnb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleMeasurements and simulations of turbines on common gridnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber8nb_NO
dc.source.volume22nb_NO
dc.source.journalIOP Conference Series: Earth and Environmentnb_NO
dc.source.issue4nb_NO
dc.identifier.doi10.1088/1755-1315/22/4/042018
dc.identifier.cristin1183746
dc.relation.projectNorges forskningsråd: 193818nb_NO
dc.description.localcodeContent from this work may be used under the terms of theCreative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd .nb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal