Vis enkel innførsel

dc.contributor.authorBachynski, Erin Elizabeth
dc.contributor.authorMoan, Torgeir
dc.date.accessioned2018-03-22T12:19:02Z
dc.date.available2018-03-22T12:19:02Z
dc.date.created2014-08-21T12:51:26Z
dc.date.issued2014
dc.identifier.citationOcean Engineering. 2014, 84 237-248.nb_NO
dc.identifier.issn0029-8018
dc.identifier.urihttp://hdl.handle.net/11250/2491700
dc.description.abstractThe present work identifies realistic wave (and associated wind) conditions which could induce ringing responses in tension leg platform wind turbines (TLPWTs). The simulation results show the importance of ringing forces, the effects of turbine operation, and the sensitivity of the ringing response to platform stiffness and viscous damping. To model the ringing loads, the second order quadratic transfer function and a bandwidth-limited summation formulation for the third order wave forces were implemented. The chosen formulation avoids the spectrum cut-off dependency and the low-frequency components of a direct implementation of the irregular wave Faltinsen, Newman, Vinje (FNV) formula. Depending on the natural period and damping, the difference between a direct implementation and this formulation was 5–25%. Ringing-type responses were simulated for 50-year wind and wave conditions. Various hydrodynamic models were used to isolate physics in different approaches. For platforms with 14–18 m diameters, ringing loads resulted in larger extreme loads and increased short-term fatigue damage in the tendons and tower. Ringing effects were particularly severe for platforms with a pitch/bending natural period of 3–4 s. The viscous damping coefficient had a negligible influence on the ringing response, while aerodynamic damping could be important in damping the oscillations following the initial maximum.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleRinging loads on tension leg platform wind turbinesnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber237-248nb_NO
dc.source.volume84nb_NO
dc.source.journalOcean Engineeringnb_NO
dc.identifier.doi10.1016/j.oceaneng.2014.04.007
dc.identifier.cristin1148353
dc.relation.projectNorges forskningsråd: 223254nb_NO
dc.description.localcode© 2014. This is the authors’ accepted and refereed manuscript to the article. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,20,0
cristin.unitnameInstitutt for marin teknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal