• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Drug and cell encapsulation: alternative delivery options for the treatment of malignant brain tumors

Bhujbal, Swapnil Vilas; Niclou, Simone; de Vos, Paul
Journal article, Peer reviewed
Published version
View/Open
1-s2.0-S0169409X14000118-main.pdf (Locked)
URI
http://hdl.handle.net/11250/2491374
Date
2014
Metadata
Show full item record
Collections
  • Institutt for bioteknologi og matvitenskap [890]
  • Publikasjoner fra CRIStin - NTNU [19934]
Original version
10.1016/j.addr.2014.01.010
Abstract
Malignant brain tumors including glioblastoma are incurable cancers. Over the last years a number of promising novel treatment approaches have been investigated including the application of inhibitors of receptor tyrosine kinases and downstream targets, immune-based therapies and anti-angiogenic agents. Unfortunately so far the major clinical trials in glioblastoma patients did not deliver clear clinical benefits. Systemic brain tumor therapy is seriously hampered by poor drug delivery to the brain. Although in glioblastoma, the blood brain barrier is disrupted in the tumor core, the major part of the tumor is largely protected by an intact blood brain barrier. Active cytotoxic compounds encapsulated into liposomes, micelles, and nanoparticles constitute novel treatment options because they can be designed to facilitate entry into the brain parenchyma. In the case of biological therapeutics, encapsulation of therapeutic cells and their implantation into the surgical cavity represents another promising approach. This technology provides long term release of the active compound at the tumor site and reduces side effects associated with systemic delivery. The proof of principle of encapsulated cell factories has been successfully demonstrated in experimental animal models and should pave the way for clinical application. Here we review the challenges associated with the treatment of brain tumors and the different encapsulation options available for drugs and living cells, with an emphasis on alginate based cell encapsulation technology.
Publisher
Elsevier
Journal
Advanced Drug Delivery Reviews

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit