Vis enkel innførsel

dc.contributor.authorSiddiqui, Muhammad Salman
dc.contributor.authorRasheed, Adil
dc.contributor.authorKvamsdal, Trond
dc.contributor.authorTabib, Mandar
dc.date.accessioned2018-03-20T08:20:59Z
dc.date.available2018-03-20T08:20:59Z
dc.date.created2015-12-09T17:47:03Z
dc.date.issued2015
dc.identifier.citationEnergy Procedia. 2015, 80 312-320.nb_NO
dc.identifier.issn1876-6102
dc.identifier.urihttp://hdl.handle.net/11250/2491154
dc.description.abstractOffshore wind energy is one of the most competitive renewable energy resources available to us, which until now been under- exploited. Most of the problems associated with wind farm installation like land acquisition, low wind conditions and its visual impact can be eliminated to large extent by going offshore. In fact it is expected that by the year 2020, 40GW of offshore wind power capacity will be in operation. In an offshore context the wind turbine design methodologies have to address new challenges. For optimal performance the turbine needs to be huge in size and for horizontal axis wind turbines (HAWT) the diameter has already reached a size of 200m. Till now little attention has been paid to vertical axis offshore wind turbines. However, within the NOWITECH project new concepts for vertical axis turbine have been proposed and it might not take a long time before such turbines may become an realistic alternative for use offshore. The current work characterizes variable turbulence intensity flow field around a rotating vertical axis wind turbine (VAWT) in an offshore context. Complete three dimensional numerical transient simulations are performed accounting for the variation of multiple turbulence intensity levels associated with the oncoming wind. Usually offshore winds are highly turbulent in nature partially because of the rapid changes in wind directions along with the sea-air interaction. The results from the study indicate that due to the increase in the turbulence intensity level of 5% to 25% the performance of wind turbine decreases by almost 23% to 42% compared to no turbulence in the incoming wind field.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.relation.urihttp://www.sciencedirect.com/science/article/pii/S0045782514004034
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectVindkraftnb_NO
dc.subjectWind powernb_NO
dc.subjectNumeriske metodernb_NO
dc.subjectNumerical methodsnb_NO
dc.subjectVindenergi, turbulensnb_NO
dc.subjectWind energy, turbulencenb_NO
dc.subjectCFD-beregningernb_NO
dc.subjectCFDnb_NO
dc.titleEffect of turbulence intensity on the performance of an offshore vertical axis wind turbinenb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.subject.nsiVDP::Matematikk og naturvitenskap: 400nb_NO
dc.subject.nsiVDP::Mathematics and natural scienses: 400nb_NO
dc.source.pagenumber312-320nb_NO
dc.source.volume80nb_NO
dc.source.journalEnergy Procedianb_NO
dc.identifier.doi10.1016/j.egypro.2015.11.435
dc.identifier.cristin1298990
dc.relation.projectNorges forskningsråd: 193823nb_NO
dc.description.localcodeCopyright © 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND 4.0 license.nb_NO
cristin.unitcode194,63,15,0
cristin.unitnameInstitutt for matematiske fag
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal