Vis enkel innførsel

dc.contributor.authorWilhelmsen, Øivind
dc.contributor.authorBerstad, David Olsson
dc.contributor.authorAasen, Ailo
dc.contributor.authorNekså, Petter
dc.contributor.authorSkaugen, Geir
dc.date.accessioned2018-03-07T12:28:13Z
dc.date.available2018-03-07T12:28:13Z
dc.date.created2018-01-16T12:33:39Z
dc.date.issued2018
dc.identifier.issn0360-3199
dc.identifier.urihttp://hdl.handle.net/11250/2489237
dc.description.abstractA present key barrier for implementing large-scale hydrogen liquefaction plants is their high power consumption. The cryogenic heat exchangers are responsible for a significant part of the exergy destruction in these plants and we evaluate in this work strategies to increase their efficiency. A detailed model of a plate-fin heat exchanger is presented that incorporates the geometry of the heat exchanger, nonequilibrium ortho-para conversion and correlations to account for the pressure drop and heat transfer coefficients due to possible boiling/condensation of the refrigerant at the lowest temperatures. Based on available experimental data, a correlation for the ortho-para conversion kinetics is developed, which reproduces available experimental data with an average deviation of 2.2%. In a plate-fin heat exchanger that is used to cool the hydrogen from 47.8 K to 29.3 K with hydrogen as refrigerant, we find that the two main sources of exergy destruction are thermal gradients and ortho-para hydrogen conversion, being responsible for 69% and 29% of the exergy destruction respectively. A route to reduce the exergy destruction from the ortho-para hydrogen conversion is to use a more efficient catalyst, where we find that a doubling of the catalytic activity in comparison to ferric-oxide, as demonstrated by nickel oxide-silica catalyst, reduces the exergy destruction by 9%. A possible route to reduce the exergy destruction from thermal gradients is to employ an evaporating mixture of helium and neon at the cold-side of the heat exchanger, which reduces the exergy destruction by 7%. We find that a combination of hydrogen and helium-neon as refrigerants at high and low temperatures respectively, enables a reduction of the exergy destruction by 35%. A combination of both improved catalyst and the use of hydrogen and helium-neon as refrigerants gives the possibility to reduce the exergy destruction in the cryogenic heat exchangers by 43%. The limited efficiency of the ortho-para catalyst represents a barrier for further improvement of the efficiency.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleReducing the exergy destruction in the cryogenic heat exchangers of hydrogen liquefaction processesnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.journalInternational journal of hydrogen energynb_NO
dc.identifier.doi10.1016/j.ijhydene.2018.01.094
dc.identifier.cristin1544035
dc.relation.projectNorges forskningsråd: 255107nb_NO
dc.description.localcode© 2018. This is the authors’ accepted and refereed manuscript to the article. Locked until 16.2.2020 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedfalse
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal