• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The effect of turbulence on mass transfer rates of small inertial particles with surface reactions

Haugen, Nils Erland Leinebø; Krüger, Jonas; Mitra, Dhrubaditya; Løvås, Terese
Journal article, Peer reviewed
Accepted version
Thumbnail
View/Open
paper.pdf (4.039Mb)
URI
http://hdl.handle.net/11250/2480782
Date
2017
Metadata
Show full item record
Collections
  • Institutt for energi og prosessteknikk [3297]
  • Publikasjoner fra CRIStin - NTNU [26591]
Original version
Journal of Fluid Mechanics. 2017, 836 932-951.   10.1017/jfm.2017.820
Abstract
The effect of turbulence on the mass transfer between a fluid and embedded small heavy inertial particles that experience surface reactions is studied. For simplicity, the surface reaction, which takes place when a gas phase reactant is converted to a gas phase product at the external surface of the particles, is unimolar and isothermal. Two effects are identified. The first effect is due to the relative velocity between the fluid and the particles, and a model for the relative velocity is presented. The second effect is due to the clustering of particles, where the mass transfer rate is inhibited due to the rapid depletion of the consumed species inside the dense particle clusters. This last effect is relevant for large Damköhler numbers, where the Damköhler number is defined as the ratio of the turbulent and chemical time scales, and it may totally control the mass transfer rate for Damköhler numbers larger than unity. A model that describes how this effect should be incorporated into existing simulation tools that utilize the Reynolds averaged Navier–Stokes approach is presented. © 2017 Cambridge University Press
Publisher
Cambridge University Press (CUP)
Journal
Journal of Fluid Mechanics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit