Vis enkel innførsel

dc.contributor.authorHeys, James G
dc.contributor.authorShay, Christopher F
dc.contributor.authorMacLeod, Katrina M
dc.contributor.authorWitter, Menno
dc.contributor.authorMoss, Cynthia F
dc.contributor.authorHasselmo, Michael E
dc.date.accessioned2017-12-13T12:55:16Z
dc.date.available2017-12-13T12:55:16Z
dc.date.created2017-01-05T15:11:22Z
dc.date.issued2016
dc.identifier.citationJournal of Neuroscience. 2016, 36 (16), 4591-4599.nb_NO
dc.identifier.issn0270-6474
dc.identifier.urihttp://hdl.handle.net/11250/2471196
dc.description.abstractMedial entorhinal cortex (MEC) grid cells exhibit firing fields spread across the environment on the vertices of a regular tessellating triangular grid. In rodents, the size of the firing fields and the spacing between the firing fields are topographically organized such that grid cells located more ventrally in MEC exhibit larger grid fields and larger grid-field spacing compared with grid cells located more dorsally. Previous experiments in brain slices from rodents have shown that several intrinsic cellular electrophysiological properties of stellate cells in layer II of MEC change systematically in neurons positioned along the dorsal–ventral axis of MEC, suggesting that these intrinsic cellular properties might control grid-field spacing. In the bat, grid cells in MEC display a functional topography in terms of grid-field spacing, similar to what has been reported in rodents. However, it is unclear whether neurons in bat MEC exhibit similar gradients of cellular physiological properties, which may serve as a conserved mechanism underlying grid-field spacing in mammals. To test whether entorhinal cortex (EC) neurons in rats and bats exhibit similar electrophysiological gradients, we performed whole-cell patch recordings along the dorsal–ventral axis of EC in bats. Surprisingly, our data demonstrate that the sag response properties and the resonance properties recorded in layer II neurons of entorhinal cortex in the Egyptian fruit bat demonstrate an inverse relationship along the dorsal–ventral axis compared with the rat.nb_NO
dc.language.isoengnb_NO
dc.publisherSociety for Neurosciencenb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titlePhysiological properties of neurons in bat entorhinal cortex exhibit an inverse gradient along the dorsal–ventral axis compared to entorhinal neurons in ratnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber4591-4599nb_NO
dc.source.volume36nb_NO
dc.source.journalJournal of Neurosciencenb_NO
dc.source.issue16nb_NO
dc.identifier.doi10.1523/JNEUROSCI.1791-15.2016
dc.identifier.cristin1421834
dc.relation.projectNorges forskningsråd: 223262nb_NO
dc.description.localcodeCopyright©2016 the authors. Articles are released under a Creative Commons Attribution License after a 6 months embargo.nb_NO
cristin.unitcode194,65,60,0
cristin.unitnameKavliinstitutt for nevrovitenskap
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal