Vis enkel innførsel

dc.contributor.authorWang, Liang
dc.contributor.authorHovd, Benedicte
dc.contributor.authorBui, Hau-Huu
dc.contributor.authorValderhaug, Aasgeir Mikael
dc.contributor.authorVidem Buø, Therese
dc.contributor.authorBirkeland, Rolf Gunnar
dc.contributor.authorSkreiberg, Øyvind
dc.contributor.authorTran, Khanh-Quang
dc.date.accessioned2017-12-12T08:25:46Z
dc.date.available2017-12-12T08:25:46Z
dc.date.created2016-06-30T18:44:45Z
dc.date.issued2016
dc.identifier.citationChemical Engineering Transactions. 2016, 50 55-60.nb_NO
dc.identifier.issn1974-9791
dc.identifier.urihttp://hdl.handle.net/11250/2470518
dc.description.abstractReplacing the use of fossil reductants with biocarbons in metallurgical industries has a great potential with respect to reducing CO2 emissions and the contribution from this industry to the increasing greenhouse gas effect. However, biocarbons are significantly different from fossil reductants and the biocarbon properties vary in a wide range depending on the raw biomass properties and the biocarbon production process conditions. A key property of the biocarbons is their reactivity in the specific metallurgical process. The reactivity should be appropriate for the specific metallurgical process, to ensure an optimum reduction process. Especially important is the biocarbon reactivity towards CO2, i.e. the CO2 gasification of biocarbon fixed carbon. A standard method has earlier been developed by the metallurgical industry to test the CO2 reactivity of coal and coke. This can be adopted also for biocarbons. However, a simpler and more cost-efficient reactivity test method is wished for. For the silicon industry, also SiO reactivity is important and a standard method has been developed. This is very expensive to carry out, and also here a simpler and more cost-efficient reactivity test method is wished for. If a qualitative correlation between SiO and CO2 reactivity could be established as well, this would be very beneficial for this metallurgical industry. In this study, the main objectives were to assess the CO2 reactivity of biocarbons produced from different woody biomass in two experimental setups, a standardized setup and a thermogravimetric analyser (TGA), and to compare with the reactivity of fossil reductants. Spruce and birch stem wood and in addition their forest residues were tested. The results show that even if quantitatively different results were found in the two experimental setups, the qualitative results were the same, and hence the TGA test provides the opportunity of a simplified and cost-efficient CO2 reactivity test method. The biocarbon from the forest residues showed a higher reactivity than stem wood biocarbon, probably due to the higher ash content in the forest residues and their biocarbons, giving a catalytic effect. Compared to coke the biocarbons were more reactive.nb_NO
dc.language.isoengnb_NO
dc.publisherThe Italian Association of Chemical Engineeringnb_NO
dc.titleCO2 reactivity assessment of woody biomass biocarbons for metallurgical purposesnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber55-60nb_NO
dc.source.volume50nb_NO
dc.source.journalChemical Engineering Transactionsnb_NO
dc.identifier.doi10.3303/CET1650010
dc.identifier.cristin1365461
dc.relation.projectNorges forskningsråd: 228726nb_NO
dc.relation.projectNorges forskningsråd: 193817nb_NO
dc.description.localcodeCopyright © 2016, AIDIC Servizi S.r.l. Open Access.nb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel