Vis enkel innførsel

dc.contributor.authorVysochinskiy, Dmitry
dc.contributor.authorCoudert, Térence
dc.contributor.authorHopperstad, Odd Sture
dc.contributor.authorLademo, Odd-Geir
dc.contributor.authorReyes, Aase Gavina Roberg
dc.date.accessioned2017-12-11T09:36:39Z
dc.date.available2017-12-11T09:36:39Z
dc.date.created2015-08-31T14:04:39Z
dc.date.issued2016
dc.identifier.citationJournal of Materials Processing Technology. 2016, 227 216-226.nb_NO
dc.identifier.issn0924-0136
dc.identifier.urihttp://hdl.handle.net/11250/2469916
dc.description.abstractSheet metal formability is traditionally described by the forming limit curve (FLC). Experimental FLCs are obtained by performing formability tests and determining failure strains. The strains are usually measured either by etching a grid on the sheet surface or by digital image correlation (DIC). Ductile metal sheets fail primarily by local necking which introduces a severe strain gradient in the failure region. This makes accurate detection of the failure strains challenging. An international standard (ISO12004-2:2008) was introduced in 2008 to unify the procedure of FLC detection; prior to this large discrepancies were observed between the results reported by different laboratories. The main limitation of the standard method for detection of forming limits is that its application is limited to cases where a single local neck is formed in the metal sheet prior to fracture. In the case of multiple local necks, the samples are simply discarded. Furthermore, the standard method does not include any guidelines to distinguish the failure by local necking and direct failure by fracture. One of the advantages of DIC over the traditional etched-grid technique is that the former allows us to obtain not only the strain distribution but also its history. This allows for alternative methods for detection of forming limit strains. This paper introduces a DIC-based method which was specially developed to handle the case of multiple local necks and to distinguish failure by local necking from direct fracture automatically. The method is not confined to a single test type and can be used in combination with different formability tests as long as DIC is used to measure strains.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleExperimental detection of forming limit strains on samples with multiple local necksnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber216-226nb_NO
dc.source.volume227nb_NO
dc.source.journalJournal of Materials Processing Technologynb_NO
dc.identifier.doi10.1016/j.jmatprotec.2015.08.019
dc.identifier.cristin1260922
dc.relation.projectNorges forskningsråd: 237885nb_NO
dc.relation.projectNorges teknisk-naturvitenskapelige universitet: 174834nb_NO
dc.description.localcode© 2015. This is the authors’ accepted and refereed manuscript to the article. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,45,0
cristin.unitnameInstitutt for konstruksjonsteknikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal