• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Numerical Study of Parametric Roll on a Fishing Vessel

Greco, Marilena; Lugni, Claudio
Chapter, Peer reviewed
Published version
Thumbnail
View/Open
grecolugni_omae2013_10690final.pdf (3.105Mb)
URI
http://hdl.handle.net/11250/2469785
Date
2013
Metadata
Show full item record
Collections
  • Institutt for marin teknikk [3634]
  • Publikasjoner fra CRIStin - NTNU [41881]
Original version
10.1115/OMAE2013-10690
Abstract
Present research activity examines numerically the occurrence of parametric roll on a fishing vessel interacting with regular head-sea waves. The adopted solver is an efficient 3-D numerical Domain-Decomposition strategy for the seakeeping of a 6-dof vessel without and with small forward speed and possibly subjected to bottom-slamming and water-on-deck events. Here, the vessel has been assumed at rest and the excitation frequency is varied in the first parametric resonance zone and occurrence and features of the instability are examined in terms of nonlinearities of the incident waves and roll natural-to-incident wave frequency ratio. The analysis is performed both fully within the potential-flow theory and examining the effect on the parametric resonance of the viscous correction to the roll damping obtained from free-decay 3D model tests on the same ship. A system of four cables, horizontal in the mean configuration, will be used experimentally to limit the horizontal vessel motions. Here the numerical solver is used to analyze the influence of cable stiffness and of cable configuration on the vessel behavior and to help the design of the physical set up. The vessel has deep draft and high mean freeboard, these aspects work against the occurrence of bottom slamming and water-on-deck events. Without forward speed, no bottom slamming phenomena were observed while limited number of water-on-deck events with small amount of shipped liquid was recorded for the highest-frequency incident waves with largest steepnesses, among those causing parametric roll.
Publisher
American Society of Mechanical Engineers (ASME)

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit