Vis enkel innførsel

dc.contributor.authorWan, Ling
dc.contributor.authorGao, Zhen
dc.contributor.authorMoan, Torgeir
dc.date.accessioned2017-12-04T13:19:13Z
dc.date.available2017-12-04T13:19:13Z
dc.date.created2015-12-04T13:32:55Z
dc.date.issued2015
dc.identifier.citationCoastal Engineering. 2015, 104 151-169.nb_NO
dc.identifier.issn0378-3839
dc.identifier.urihttp://hdl.handle.net/11250/2469061
dc.description.abstractThe Spar Torus Combination (STC) concept consists of a spar floating wind turbine and a torus-shaped heaving-body wave energy converter (WEC). Numerical simulations have shown a positive synergy between the WEC and the spar floating wind turbine under operational conditions. However, it is challenging to maintain structural integrity under extreme wind and wave conditions, especially for the WEC. To ensure the survivability of the STC under extreme conditions, three survival modes have been proposed. To investigate the performance of the STC under extreme conditions, model tests with a scaling factor of 1:50 were carried out in the towing tank of MARINTEK, Norway. Two survival modes were tested. In both modes, the torus WEC was fixed to the spar. In the first mode, the torus WEC is at the mean water surface, while in the second mode, it is fully submerged to a specified position. The model tests recorded the 6 degrees of freedom (D.O.F.s) rigid body motions, mooring line tensions, and the forces between the spar and torus in 3 directions (X, Y and Z). The wind speed was also measured by a sensor in front of the model and the wind force on the wind turbine disk was measured by a load cell installed on top of the tower. This paper describes the model test setup for the two survival modes, and presents and compares the results from the tests and the numerical simulations. Several nonlinear phenomena were observed during the tests, such as wave slamming, Mathieu instability and vortex induced motion. The current numerical model based on linear potential theory cannot capture these nonlinear phenomena and requires a further development.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleExperimental and numerical study of hydrodynamic responses of a combined wind and wave energy converter concept in survival modesnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber151-169nb_NO
dc.source.volume104nb_NO
dc.source.journalCoastal Engineeringnb_NO
dc.identifier.doi10.1016/j.coastaleng.2015.07.001
dc.identifier.cristin1297055
dc.relation.projectNorges forskningsråd: 223254nb_NO
dc.description.localcode© 2015. This is the authors’ accepted and refereed manuscript to the article. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,20,0
cristin.unitnameInstitutt for marin teknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal