Show simple item record

dc.contributor.authorCloete, Schalk Willem Petrus
dc.contributor.authorJohansen, Stein Tore
dc.contributor.authorAmini, Shahriar
dc.date.accessioned2017-12-04T09:30:25Z
dc.date.available2017-12-04T09:30:25Z
dc.date.created2014-12-17T15:03:18Z
dc.date.issued2014
dc.identifier.citationPowder Technology. 2014, 269 153-165.nb_NO
dc.identifier.issn0032-5910
dc.identifier.urihttp://hdl.handle.net/11250/2468908
dc.description.abstractIt is well known that particle size has a significant influence on the grid independence behaviour of fluidized bed reactor simulations carried out using the Two Fluid Model (TFM) approach. The general rule of thumb states that the cell size should scale linearly with the particle size so that the cell size is always at most a factor of 10 larger than the particle size. In this study, however, the effect of particle size on grid independence behaviour was shown to be unexpectedly large. In particular, a five-fold increase in particle size permitted the use of a 63 times larger cell size, implying a 633 ≈ 250,000 times speedup for resolved simulations in the planar 2D domain considered in this study. Thus, the general rule of thumb was found to be overly cautious, especially for larger particles. Closer investigation revealed the particle relaxation time to be a very good predictor of the grid independent cell size. Although this finding needs to be confirmed for parameters other than only the particle size, this relation can theoretically be used to greatly shorten the time-consuming grid independence studies that are required before any fluidized bed simulation campaign. In general, the rapid increase in cell size allowed by larger particle sizes showed that reasonably accurate industrial scale simulations (5 m inner diameter reactor) are already possible in 2D for large particles (~ 600 μm). If the 2D grid independence behaviour assessed in this study is extendible to 3D, larger particle sizes in the range of 500–1000 μm can already be simulated in full 3D for reactor sizes ranging from 1–4 m. Simulation of smaller particle sizes (< 200 μm) will remain out of reach for many decades to come, however, and a filtered coarse grid approach will definitely be required to make such simulations possible.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleGrid independence behaviour of fluidized bed reactor simulations using the Two Fluid Model: Effect of particle sizenb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber153-165nb_NO
dc.source.volume269nb_NO
dc.source.journalPowder Technologynb_NO
dc.identifier.doi10.1016/j.powtec.2014.08.055
dc.identifier.cristin1186558
dc.relation.projectNorges forskningsråd: 197580nb_NO
dc.relation.projectNotur/NorStore: NN9154Knb_NO
dc.description.localcode© 2014. This is the authors’ accepted and refereed manuscript to the article. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal