• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

No-Reference Quality Measure in Brain MRI Images using Binary Operations, Texture and Set Analysis

Osadebey, Michael; Pedersen, Marius; Arnold, Douglas; Wendel-Mitoraj, Katrina
Journal article, Peer reviewed
Accepted version
Thumbnail
Åpne
IET+-+IMAGE+PROCESSING+%28POSTPRINT%29.pdf (1015.Kb)
Permanent lenke
http://hdl.handle.net/11250/2468630
Utgivelsesdato
2017
Metadata
Vis full innførsel
Samlinger
  • Institutt for datateknologi og informatikk [4881]
  • Publikasjoner fra CRIStin - NTNU [26591]
Originalversjon
IET Image Processing. 2017, 11 (9), 672-684.   10.1049/iet-ipr.2016.0560
Sammendrag
The authors propose a new application-specific, post-acquisition quality evaluation method for brain magnetic resonance imaging (MRI) images. The domain of a MRI slice is regarded as universal set. Four feature images; greyscale, local entropy, local contrast and local standard deviation are extracted from the slice and transformed into the binary domain. Each feature image is regarded as a set enclosed by the universal set. Four qualities attribute; lightness, contrast, sharpness and texture details are described by four different combinations of feature sets. In an ideal MRI slice, the four feature sets are identically equal. Degree of distortion in real MRI slice is quantified by fidelity between the sets that describe a quality attribute. Noise is the fifth quality attribute and is described by the slice Euler number region property. Total quality score is the weighted sum of the five quality scores. The authors' proposed method addresses current challenges in image quality evaluation. It is simple, easy-to-use and easy-to-understand. Incorporation of binary transformation in the proposed method reduces computational and operational complexity of the algorithm. They provide experimental results that demonstrate efficacy of their proposed method on good quality images and on common distortions in MRI images of the brain.
Utgiver
Institution of Engineering and Technology (IET)
Tidsskrift
IET Image Processing

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit