• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

The spatial statistics of structural magnetic resonance images: application to post-acquisition quality assessment of brain MRI images

Osadebey, Michael; Pedersen, Marius; Arnold, Douglas; Wendel-Mitoraj, Katrina; Alzheimer's Disease Neuroi, The
Journal article
Submitted version
Thumbnail
Åpne
ImagingScience.pdf (1.468Mb)
Permanent lenke
http://hdl.handle.net/11250/2468617
Utgivelsesdato
2017
Metadata
Vis full innførsel
Samlinger
  • Institutt for datateknologi og informatikk [4900]
  • Publikasjoner fra CRIStin - NTNU [26648]
Originalversjon
Imaging Science Journal. 2017, 65 (8), 468-483.   10.1080/13682199.2017.1369641
Sammendrag
This report describes a new quality evaluation method for structural magnetic resonance images (MRI) of the brain. Pixels in MRI images are regarded as regionalized random variables that exhibit distinct and organized geographic patterns. We extract geo-spatial local entropy features and build three separate Gaussian distributed quality models upon them using 250 brain MRI images of different subjects. The MRI images were provided by Alzheimer's disease neuroimaging initiative (ADNI). Image quality of a test image is predicted in a three-step process. In the first step, three separate geo-spatial feature vectors are extracted. The second step standardizes each quality model using corresponding geo-spatial feature vector extracted from the test image. The third step computes image quality by transforming the standardized score to probability. The proposed method was evaluated on images without perceived distortion and images degraded by different levels of motion blur and Rician noise as well as images with different configurations of bias fields. Based on the performance evaluation, our proposed method will be suitable for use in the field of clinical research where quality evaluation is required for the brain MRI images acquired from different MRI scanners and different clinical trial sites before they are fed into automated image processing and image analysis systems.
Utgiver
Maney Publishing
Tidsskrift
Imaging Science Journal

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit