• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

In-Line Vibrations of Flexible Pipes

Ulveseter, Jan Vidar; Sævik, Svein
Chapter, Peer reviewed
Accepted version
Åpne
asme2e.pdf (Låst)
Permanent lenke
http://hdl.handle.net/11250/2468225
Utgivelsesdato
2017
Metadata
Vis full innførsel
Samlinger
  • Institutt for marin teknikk [2885]
  • Publikasjoner fra CRIStin - NTNU [26746]
Originalversjon
10.1115/OMAE2017-61325
Sammendrag
A semi-empirical prediction tool for pure in-line vortex-induced vibrations is under development. The long-term goal is to be able to realistically model the dynamic behavior of free spanning pipelines exposed to arbitrary time dependent external flows at low velocities. Most VIV programs operate in frequency domain, where only steady currents and linear structural models can be simulated. In contrast, the proposed model predicts hydrodynamic forces as function of time, enabling a time integration scheme to solve the equation of motion. Non-linear time domain simulations allow for modelling of excitation from non-steady currents. In addition, non-linear effects such as soil-pipe interaction, varying tension, and response dependent material, stiffness and damping properties may be included in the analysis, when combining the hydrodynamic force model with a structural non-linear finite element model. Hydrodynamically, the proposed prediction tool consists of the general Morison equation plus two vortex shedding forcing terms. The latter two are able to synchronize with the structural motion for a given frequency band, to induce vibrations in lock-in regimes.

In this paper, the proposed pure in-line VIV model is compared to the frequency domain model VIVANA and DNV Recommended Practice, simulating experiments with a model-scale flexible pipe exposed to current velocities at which cross-flow vibrations have not yet developed. A few experimental data points are included in verifying the performance of the newly developed time domain model. The effect of changing empirical coefficients in the vortex shedding forcing terms, and allowing only one of the terms to excite structural vibrations during a simulation, is numerically investigated. A goal is to obtain increased understanding of how the proposed time domain model performs when simulating VIV of a flexible pipe, which is more complex than that of an elastically mounted rigid cylinder since several natural frequencies and corresponding modes might be excited.
Utgiver
American Society of Mechanical Engineers (ASME)

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit