Vis enkel innførsel

dc.contributor.authorHertwich, Edgar G.
dc.contributor.authorGibon, Thomas
dc.contributor.authorBouman, Evert
dc.contributor.authorArvesen, Anders
dc.contributor.authorSuh, Sangwon
dc.contributor.authorHeath, Garvin
dc.contributor.authorBergesen, Joseph
dc.contributor.authorRamirez, Andrea
dc.contributor.authorVega, Mabel
dc.contributor.authorShi, Lei
dc.date.accessioned2017-11-23T11:21:03Z
dc.date.available2017-11-23T11:21:03Z
dc.date.created2014-10-13T15:34:54Z
dc.date.issued2015
dc.identifier.citationProceedings of the National Academy of Sciences of the United States of America. 2015, 112 (20), 6277-6282.nb_NO
dc.identifier.issn0027-8424
dc.identifier.urihttp://hdl.handle.net/11250/2467746
dc.description.abstractDecarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11–40 times more copper for photovoltaic systems and 6–14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050.nb_NO
dc.language.isoengnb_NO
dc.publisherNational Academy of Sciencesnb_NO
dc.relation.urihttp://www.pnas.org/content/early/2014/10/02/1312753111.full.pdf+html?with-ds=yes
dc.titleIntegrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologiesnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber6277-6282nb_NO
dc.source.volume112nb_NO
dc.source.journalProceedings of the National Academy of Sciences of the United States of Americanb_NO
dc.source.issue20nb_NO
dc.identifier.doi10.1073/pnas.1312753111
dc.identifier.cristin1163620
dc.relation.projectNorges forskningsråd: 206998nb_NO
dc.relation.projectNorges forskningsråd: 209697nb_NO
dc.description.localcode© 2014 National Academy of Sciencesnb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel