Vis enkel innførsel

dc.contributor.authorLiberman, Michael A.
dc.contributor.authorKleeorin, Nathan
dc.contributor.authorRogachevskii, Igor
dc.contributor.authorHaugen, Nils Erland L
dc.date.accessioned2017-11-21T15:56:24Z
dc.date.available2017-11-21T15:56:24Z
dc.date.created2017-09-05T15:26:38Z
dc.date.issued2017
dc.identifier.issn2470-0045
dc.identifier.urihttp://hdl.handle.net/11250/2467418
dc.description.abstractIt is known that unconfined dust explosions typically start off with a relatively weak primary flame followed by a severe secondary explosion. We show that clustering of dust particles in a temperature stratified turbulent flow ahead of the primary flame may give rise to a significant increase in the radiation penetration length. These particle clusters, even far ahead of the flame, are sufficiently exposed and heated by the radiation from the flame to become ignition kernels capable to ignite a large volume of fuel-air mixtures. This efficiently increases the total flame surface area and the effective combustion speed, defined as the rate of reactant consumption of a given volume. We show that this mechanism explains the high rate of combustion and overpressures required to account for the observed level of damage in unconfined dust explosions, e.g., at the 2005 Buncefield vapor-cloud explosion. The effect of the strong increase of radiation transparency due to turbulent clustering of particles goes beyond the state of the art of the application to dust explosions and has many implications in atmospheric physics and astrophysics. ©2017 American Physical Societynb_NO
dc.language.isoengnb_NO
dc.publisherAmerican Physical Societynb_NO
dc.titleMechanism of unconfined dust explosions: Turbulent clustering and radiation-induced ignitionnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.volume95nb_NO
dc.source.journalPhysical review. Enb_NO
dc.identifier.doi10.1103/PhysRevE.95.051101
dc.identifier.cristin1491164
dc.relation.projectNorges forskningsråd: 231444nb_NO
dc.description.localcode© 2017 American Physical Societynb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel