Vis enkel innførsel

dc.contributor.authorCourtade, Gaston
dc.contributor.authorWimmer, Reinhard
dc.contributor.authorKjendseth, Åsmund Røhr
dc.contributor.authorPreims, Marita
dc.contributor.authorFelice, Alfons K.G.
dc.contributor.authorDimarogona, Maria
dc.contributor.authorVaaje-Kolstad, Gustav
dc.contributor.authorSørlie, Morten
dc.contributor.authorSandgren, Mats
dc.contributor.authorLudwig, Roland
dc.contributor.authorEijsink, Vincent
dc.contributor.authorAachmann, Finn Lillelund
dc.date.accessioned2017-11-13T13:04:00Z
dc.date.available2017-11-13T13:04:00Z
dc.date.created2016-05-09T09:36:24Z
dc.date.issued2016
dc.identifier.citationProceedings of the National Academy of Sciences of the United States of America. 2016, 113 (21), 5922-5927.nb_NO
dc.identifier.issn0027-8424
dc.identifier.urihttp://hdl.handle.net/11250/2465839
dc.description.abstractLytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that catalyze oxidative cleavage of glycosidic bonds using molecular oxygen and an external electron donor. We have used NMR and isothermal titration calorimetry (ITC) to study the interactions of a broad-specificity fungal LPMO, NcLPMO9C, with various substrates and with cellobiose dehydrogenase (CDH), a known natural supplier of electrons. The NMR studies revealed interactions with cellohexaose that center around the copper site. NMR studies with xyloglucans, i.e., branched β-glucans, showed an extended binding surface compared with cellohexaose, whereas ITC experiments showed slightly higher affinity and a different thermodynamic signature of binding. The ITC data also showed that although the copper ion alone hardly contributes to affinity, substrate binding is enhanced for metal-loaded enzymes that are supplied with cyanide, a mimic of O2 −. Studies with CDH and its isolated heme b cytochrome domain unambiguously showed that the cytochrome domain of CDH interacts with the copper site of the LPMO and that substrate binding precludes interaction with CDH. Apart from providing insights into enzyme–substrate interactions in LPMOs, the present observations shed new light on possible mechanisms for electron supply during LPMO action.nb_NO
dc.language.isoengnb_NO
dc.publisherNational Academy of Sciencesnb_NO
dc.relation.uriwww.pnas.org/cgi/doi/10.1073/pnas.1602566113
dc.titleInteractions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenasenb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber5922-5927nb_NO
dc.source.volume113nb_NO
dc.source.journalProceedings of the National Academy of Sciences of the United States of Americanb_NO
dc.source.issue21nb_NO
dc.identifier.doi10.1073/pnas.1602566113
dc.identifier.cristin1354463
dc.relation.projectNorges forskningsråd: 221576nb_NO
dc.relation.projectNorges forskningsråd: 226244nb_NO
dc.relation.projectNorges forskningsråd: 214613nb_NO
dc.relation.projectNorges forskningsråd: 240967nb_NO
dc.description.localcode© 2016 The Authors. Published by National Academy of Sciences.nb_NO
cristin.unitcode194,66,15,0
cristin.unitnameInstitutt for bioteknologi og matvitenskap
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel