• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparative testing and evaluation of nine different air samplers: End-to-end sampling efficiencies as specific performance measurements for bioaerosol applications

Dybwad, Marius; Skogan, Gunnar; Blatny, Janet Martha
Journal article, Peer reviewed
Published version
View/Open
1126298.pdf (Locked)
URI
http://hdl.handle.net/11250/2465817
Date
2014
Metadata
Show full item record
Collections
  • Institutt for bioteknologi og matvitenskap [1715]
  • Publikasjoner fra CRIStin - NTNU [41954]
Original version
Aerosol Science and Technology. 2014, 48 (3), 282-295.   10.1080/02786826.2013.871501
Abstract
Accurate exposure assessments are needed to evaluate health hazards caused by airborne microorganisms and require air samplers that efficiently capture representative samples. This highlights the need for samplers with well-defined performance characteristics. While generic aerosol performance measurements are fundamental to evaluate/compare samplers, the added complexity caused by the diversity of microorganisms, especially in combination with cultivation-based analysis methods, may render such measurements inadequate to assess suitability for bioaerosols. Specific performance measurements that take into account the end-to-end sampling process, targeted bioaerosol and analysis method could help guide selection of air samplers.

Nine different samplers (impactors/impingers/cyclones/ electrostatic precipitators/filtration samplers) were subjected to comparative performance testing in this work. Their end-to-end cultivation-based biological sampling efficiencies (BSEs) and PCR-/microscopy-based physical sampling efficiencies (PSEs) relative to a reference sampler (BioSampler) were determined for gram-negative and gram-positive vegetative bacteria, bacterial spores, and viruses.

Significant differences were revealed among the samplers and shown to depend on the bioaerosol's stress–sensitivity and particle size. Samplers employing dry collection had lower BSEs for stress-sensitive bioaerosols than wet collection methods, while nonfilter-based samplers showed reduced PSEs for 1 μm compared to 4 μm bioaerosols. Several samplers were shown to underestimate bioaerosol concentration levels relative to the BioSampler due to having lower sampling efficiencies, although they generally obtained samples that were more concentrated due to having higher concentration factors.

Our work may help increase user awareness about important performance criteria for bioaerosol sampling, which could contribute to methodological harmonization/standardization and result in more reliable exposure assessments for airborne pathogens and other bioaerosols of interest.
Journal
Aerosol Science and Technology

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit