• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Recommendation System for Immunization Coverage and Monitoring

Bhatti, Uzair Aslam; Huang, Mengxing; Wang, Hao; Zhang, Yu; Mehmood, Anum; Wu, Di
Journal article, Peer reviewed
Submitted version
Thumbnail
Åpne
ieee-format.pdf (805.1Kb)
Permanent lenke
http://hdl.handle.net/11250/2462730
Utgivelsesdato
2017
Metadata
Vis full innførsel
Samlinger
  • Institutt for IKT og realfag [242]
  • Publikasjoner fra CRIStin - NTNU [19750]
Originalversjon
10.1080/21645515.2017.1379639
Sammendrag
Immunization averts an expected 2 to 3 million deaths every year from diphtheria, tetanus, pertussis (whooping cough), and measles; however, an additional 1.5 million deaths could be avoided if vaccination coverage was improved worldwide.11 Data source for immunization records of 1.5 M: http://www.who.int/mediacentre/factsheets/fs378/en/

View all notes

New vaccination technologies provide earlier diagnoses, personalized treatments and a wide range of other benefits for both patients and health care professionals. Childhood diseases that were commonplace less than a generation ago have become rare because of vaccines. However, 100% vaccination coverage is still the target to avoid further mortality. Governments have launched special campaigns to create an awareness of vaccination. In this paper, we have focused on data mining algorithms for big data using a collaborative approach for vaccination datasets to resolve problems with planning vaccinations in children, stocking vaccines, and tracking and monitoring non-vaccinated children appropriately. Geographical mapping of vaccination records helps to tackle red zone areas, where vaccination rates are poor, while green zone areas, where vaccination rates are good, can be monitored to enable health care staff to plan the administration of vaccines. Our recommendation algorithm assists in these processes by using deep data mining and by accessing records of other hospitals to highlight locations with lower rates of vaccination. The overall performance of the model is good. The model has been implemented in hospitals to control vaccination across the coverage area.
Utgiver
Taylor & Francis
Tidsskrift
Human Vaccines & Immunotherapeutics

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit