Vis enkel innførsel

dc.contributor.authorKhadyko, Mikhail
dc.contributor.authorDumoulin, Stephane
dc.contributor.authorBørvik, Tore
dc.contributor.authorHopperstad, Odd Sture
dc.date.accessioned2017-10-06T11:12:55Z
dc.date.available2017-10-06T11:12:55Z
dc.date.created2014-08-27T14:16:44Z
dc.date.issued2014
dc.identifier.citationInternational Journal of Mechanical Sciences. 2014, 88 25-36.nb_NO
dc.identifier.issn0020-7403
dc.identifier.urihttp://hdl.handle.net/11250/2458937
dc.description.abstractThe determination of work-hardening for ductile materials at large strains is difficult to perform in the framework of usual tensile tests because of the geometrical instability and necking in the specimen at relatively low strains. In this study, we propose a combination of experimental and numerical techniques to overcome this difficulty. Extruded aluminium alloys are used as a case since they exhibit marked plastic anisotropy. In the experiments, the minimum diameters of the axisymmetric tensile specimen in two normal directions are measured at high frequency by a laser gauge in the necking area together with the corresponding force, and the true stress-strain curve is found. The anisotropy of the material is determined from its crystallographic texture using the crystal plasticity theory. This data is used to represent the specimen by a 3D finite element model with phenomenological anisotropic plasticity. The experimental true stress-strain curve is then used as a target curve in an optimization procedure for calibrating the hardening parameters of the material model. As a result, the equivalent stress-strain curve of the material up to fracture is obtained.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleAn experimental-numerical method to determine the work-hardening of anisotropic ductile materials at large strainsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber25-36nb_NO
dc.source.volume88nb_NO
dc.source.journalInternational Journal of Mechanical Sciencesnb_NO
dc.identifier.doi10.1016/j.ijmecsci.2014.07.001
dc.identifier.cristin1149815
dc.relation.projectNorges forskningsråd: 174834nb_NO
dc.description.localcode© 2014. This is the authors’ accepted and refereed manuscript to the article. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,45,0
cristin.unitnameInstitutt for konstruksjonsteknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal