Vis enkel innførsel

dc.contributor.authorChavez Panduro, Elvia Anabela
dc.contributor.authorTorsæter, Malin
dc.contributor.authorGawel, Kamila
dc.contributor.authorBjørge, Ruben
dc.contributor.authorGibaud, Alain
dc.contributor.authorYang, Yi
dc.contributor.authorSørensen, Henning
dc.contributor.authorFrykman, Peter
dc.contributor.authorKjøller, Claus
dc.contributor.authorBreiby, Dag Werner
dc.date.accessioned2017-08-22T11:31:48Z
dc.date.available2017-08-22T11:31:48Z
dc.date.created2017-08-19T17:48:55Z
dc.date.issued2017
dc.identifier.citationEnergy Procedia. 2017, 114 5100-5108.nb_NO
dc.identifier.issn1876-6102
dc.identifier.urihttp://hdl.handle.net/11250/2451452
dc.description.abstractLong-lasting cement plugging of wells is crucial for successful CO2 storage in underground reservoirs. It requires a profoundly improved understanding of the behavior of fractured cement under realistic subsurface conditions including elevated temperature, high pressure and the presence of CO2 saturated brine. Here we report computed X-ray tomography studies on the effects of CO2 on cement. More specifically, we have exposed cured Portland G cement samples with pre-made microchannels mimicking fractures to CO2 saturated brine at elevated pressure (100 bars) and room temperature. The microchannels were observed to get filled with calcite (CaCO3) during the CO2 exposure. The extent of this self-healing was dependent on the diameter of the leakage path, with narrower channels more readily getting clogged. Chemical simulations taking into account the cement composition, CO2 availability, pH, pressure and temperature gave results consistent with our conceptual understanding of how the differences in dissolution/precipitation profiles in the cement may result from the availability of CO2. In particular, the modelling provides an explanation why calcite precipitates preferentially in the channels rather than on the external cement sample surfaces. We conclude that the localized precipitation can be ascribed to higher pH inside the cavities compared to near the external surfaces, owing to long diffusion distances giving a locally limited CO2 supply within the voids.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.relation.urihttp://www.sciencedirect.com/science/article/pii/S1876610217318660
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleClosing of Micro-cavities in Well Cement upon Exposure to CO2 Brinenb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber5100-5108nb_NO
dc.source.volume114nb_NO
dc.source.journalEnergy Procedianb_NO
dc.identifier.doi10.1016/j.egypro.2017.03.1665
dc.identifier.cristin1487407
dc.relation.projectNorges forskningsråd: 243765nb_NO
dc.relation.projectNorges forskningsråd: 193816nb_NO
dc.relation.projectEC/H2020/653241nb_NO
dc.relation.projectNorges forskningsråd: 221860nb_NO
dc.description.localcode© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)nb_NO
cristin.unitcode194,66,20,0
cristin.unitnameInstitutt for fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal