Vis enkel innførsel

dc.contributor.authorTrivedi, Chirag
dc.contributor.authorCervantes, Michel
dc.date.accessioned2017-05-18T11:48:28Z
dc.date.available2017-05-18T11:48:28Z
dc.date.created2016-10-12T07:46:21Z
dc.date.issued2017
dc.identifier.citationRenewable & Sustainable Energy Reviews. 2017, 68 87-101.nb_NO
dc.identifier.issn1364-0321
dc.identifier.urihttp://hdl.handle.net/11250/2442763
dc.description.abstractCompetitive electricity prices and reduced profit margins have forced hydraulic turbines to operate under critical conditions. The demand for extended operating ranges and the high efficiency of the turbine runners have forced manufacturers to produce lightweight runners. A turbine runner sometimes experiences resonance when a forced (flow-induced) excitation frequency approaches the runner’s natural frequency, resulting in failure. The cost of structural failure after commissioning is prohibitive. To attain a reliable and safe runner design, understanding of the structural response to flow-induced excitations is important. High amplitude pressure pulsations cause fatigue loading of the blades, which develop cracks over time. The amplitudes are dependent on the flow conditions, type of turbine and stator/rotor vane combinations. The structural response is dependent on the material properties, flow-induced damping and natural frequencies. Moreover, in a hydraulic turbine, changes in flow velocity from less than 1 m s−1 to over 40 m s−1 create challenges in predicting the response. The main objective of this article is to review the studies conducted on fluid-structure interactions within hydraulic turbines. Several aspects are reviewed, such as flow-induced excitation, added mass effect, hydrodynamic damping, and blade flutter. Both experimental and numerical studies are discussed in this article. This review also discusses the consequences of an increased number of transient cycles, such as load variation, start-stop and total load rejection, on the turbines and the fatigue loading. Finally, an attempt is made to highlight the important requirements for prospective fluid-structure analysis to fill current gaps in the literature.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleFluid-structure interactions in Francis turbines: A perspective reviewnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersion
dc.source.pagenumber87-101nb_NO
dc.source.volume68nb_NO
dc.source.journalRenewable and Sustainable Energy Reviewsnb_NO
dc.identifier.doi10.1016/j.rser.2016.09.121
dc.identifier.cristin1391078
dc.description.localcodeThis is the authors' accepted and refereed manuscript to the article. Locked until 28 February 2019 due to copyright restrictionsnb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal