Energy transfer due to shoaling and decomposition of breaking and non-breaking waves over a submerged bar
Journal article, Peer reviewed
Published version
View/ Open
Date
2017Metadata
Show full item recordCollections
Original version
Engineering Applications of Computational Fluid Mechanics. 2017, 11 (1), 450-466. 10.1080/19942060.2017.1310671Abstract
Wave propagation over a submerged bar is simulated using the open source CFD model REEF3D with various incident wave heights to study shoaling, wave breaking features and the process of wave decomposition into higher harmonics for relatively long waves of kd=0.52. The computed free surface elevations are compared with experimental data and good agreement is obtained for both non-breaking and spilling breaking waves for both the wave phase and free surface elevation, which has been difficult to obtain in current literature. The differences in the mode of wave shoaling over the weather side slope and the wave decomposition over the lee side slope of the submerged bar are discussed. The evolution of spilling breakers and plunging breakers over the bar crest is also studied. It is found that the free surface elevation continuously increases due to shoaling in the case of non-breaking waves, whereas breaking waves propagate with much lower free surface elevations after breaking over the bar crest. The power spectra of the free surface elevations at various locations indicate that the wave energy in the fundamental frequency is reduced by 76 % for the non-breaking wave with kA=0.015 and by about 90 in other cases with higher incident wave heights with kA=0.023−0.034 due to energy dissipation and energy transfer to higher harmonic components as the wave propagates over the submerged bar.