• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Fakultet for økonomi (ØK)
  • Institutt for industriell økonomi og teknologiledelse
  • Vis innførsel
  •   Hjem
  • Fakultet for økonomi (ØK)
  • Institutt for industriell økonomi og teknologiledelse
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investment in flexible hydrogen production from local wind power: Optimising timing, capacity and plant operations of an investment under uncertainty

Ødegaard, Lars Michael Eeg; Engh, Jørgen Bjørnstad
Master thesis
Thumbnail
Åpne
15242_FULLTEXT.pdf (5.574Mb)
15242_ATTACHMENT.zip (13.44Kb)
15242_COVER.pdf (1.841Mb)
Permanent lenke
http://hdl.handle.net/11250/2433849
Utgivelsesdato
2016
Metadata
Vis full innførsel
Samlinger
  • Institutt for industriell økonomi og teknologiledelse [2425]
Sammendrag
Hydrogen produced from renewable energy can be used as an zero emission fuel. While

hydrogen has applications across several industries its largest potential is seen as a fuel for

hydrogen vehicles. Widespread adoption of hydrogen technologies therefore has the potential

to facilitate significant emission reductions and contribute towards climate change

goals. Most of the technologies are still in the early stages of commercialisation and high

costs have historically constrained the adoption. However, with technological developments

and government support the demand for hydrogen is expected to grow substantially.

In this thesis we consider a price taking Norwegian energy producer who considers to

become a supplier of hydrogen in the future. The company holds the option to invest in

hydrogen production from electrolysis by extending an existing wind farm. The hydrogen

production is assumed to be flexible, and the investor needs to decide how to operate

the hydrogen plant optimally to maximise his profits. In order to find optimal timing,

capacity and plant operation of the investment under uncertainty, we apply a real options

approach. We develop a multi-factor model using dynamic programming that is solved

using least square Monte Carlo.
Utgiver
NTNU

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit