Vis enkel innførsel

dc.contributor.authorBlogg, Lesley S
dc.contributor.authorGennser, Mikael
dc.contributor.authorMøllerløkken, Andreas
dc.contributor.authorBrubakk, Alf O
dc.date.accessioned2015-02-06T13:21:58Z
dc.date.accessioned2016-09-08T13:18:58Z
dc.date.available2015-02-06T13:21:58Z
dc.date.available2016-09-08T13:18:58Z
dc.date.issued2014
dc.identifier.citationDiving and Hyperbaric Medicine 2014, 44(1):35-44nb_NO
dc.identifier.issn1833-3516
dc.identifier.urihttp://hdl.handle.net/11250/2405515
dc.description.abstractINTRODUCTION: Diving often causes the formation of 'silent' bubbles upon decompression. If the bubble load is high, then the risk of decompression sickness (DCS) and the number of bubbles that could cross to the arterial circulation via a pulmonary shunt or patent foramen ovale increase. Bubbles can be monitored aurally, with Doppler ultrasound, or visually, with two dimensional (2D) ultrasound imaging. Doppler grades and imaging grades can be compared with good agreement. Early 2D imaging units did not provide such comprehensive observations as Doppler, but advances in technology have allowed development of improved, portable, relatively inexpensive units. Most now employ harmonic technology; it was suggested that this could allow previously undetectable bubbles to be observed. METHODS: This paper provides a review of current methods of bubble measurement and how new technology may be changing our perceptions of the potential relationship of these measurements to decompression illness. Secondly, 69 paired ultrasound images were made using conventional 2D ultrasound imaging and harmonic imaging. Images were graded on the Eftedal-Brubakk (EB) scale and the percentage agreement of the images calculated. The distribution of mismatched grades was analysed. RESULTS: Fifty-four of the 69 paired images had matching grades. There was no significant difference in the distribution of high or low EB grades for the mismatched pairs. CONCLUSIONS: Given the good level of agreement between pairs observed, it seems unlikely that harmonic technology is responsible for any perceived increase in observed bubble loads, but it is probable that our increasing use of 2D ultrasound to assess dive profiles is changing our perception of 'normal' venous and arterial bubble loads. Methods to accurately investigate the load and size of bubbles developed will be helpful in the future in determining DCS risk.nb_NO
dc.language.isoengnb_NO
dc.publisherSouth Pacific Medicine Society and the European Underwater and Baromedical Society.nb_NO
dc.subjectDoppler; arterial gas embolism; bubbles; decompression sickness; diving research; review article; venous gas embolismnb_NO
dc.titleUltrasound detection of vascular decompression bubbles: The influence of new technology and considerations on bubble loadnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.date.updated2015-02-06T13:21:58Z
dc.source.pagenumber35-44nb_NO
dc.source.volume44nb_NO
dc.source.journalDiving and Hyperbaric Medicinenb_NO
dc.source.issue1nb_NO
dc.identifier.cristin1128146
dc.description.localcodeAuthor postprintnb_NO


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel