• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for ingeniørvitenskap (IV)
  • Institutt for geovitenskap og petroleum
  • View Item
  •   Home
  • Fakultet for ingeniørvitenskap (IV)
  • Institutt for geovitenskap og petroleum
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Flow properties of water-based drilling fluids

Kristensen, Aleksander
Master thesis
Thumbnail
View/Open
657083_COVER01.pdf (184.1Kb)
657083_FULLTEXT01.pdf (2.650Mb)
URI
http://hdl.handle.net/11250/240208
Date
2013
Metadata
Show full item record
Collections
  • Institutt for geovitenskap og petroleum [2169]
Abstract
The objective of this master thesis was to investigate the flow properties of water based drilling fluids, utilizing measurements in both the micro and macro scale. The research was performed on two realistic drilling fluids by the use of a viscometer, a rheometer and a realistic flow loop, where the latter represents the macro scale. The research outcome could possibly improve the understanding of flow behavior in wellbores, and remove uncertainties associated with annular friction. The two fluids utilized in the research was made up with the goal of having equal rheological qualities, when measured with a Fann 35 viscometer. A more thorough examination of the two fluid's rheology was then executed by using a Anton Paar MCR302 rheometer. The macroscopic properties was researched employing a flow loop, capable of simulating realistic wellbore conditions.The main outcome of this thesis is that even though two fluids appear to have the same rheoligical properties when measured on simple equipment, their fundamental different microscopic structure will exhibit variations when the fluids are utilized in real applications.Due to problems encountered when mixing the fluids, as well as problems with one of the fluids itself, not all intended experiments were conducted. The experiments should be replicated with an emphasis on temperature control, avoiding bubbles and foam, and be conducted within a shorter time period.
Publisher
Institutt for petroleumsteknologi og anvendt geofysikk

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit