Vis enkel innførsel

dc.contributor.authorBacki, Christoph Josef
dc.contributor.authorBendtsen, Jan Dimon
dc.contributor.authorLeth, John
dc.contributor.authorGravdahl, Jan Tommy
dc.date.accessioned2015-01-19T12:17:22Z
dc.date.accessioned2016-07-05T13:01:56Z
dc.date.available2015-01-19T12:17:22Z
dc.date.available2016-07-05T13:01:56Z
dc.date.issued2014
dc.identifier.citationElsevier IFAC Publications / IFAC Proceedings series 2014:7019-7024nb_NO
dc.identifier.issn1474-6670
dc.identifier.urihttp://hdl.handle.net/11250/2395670
dc.description.abstractIn this work the stability properties of a nonlinear partial differential equation (PDE) with state-dependent parameters is investigated. Among other things, the PDE describes freezing of foodstuff, and is closely related to the (Potential) Burgers’ Equation. We show that for certain forms of coefficient functions, the PDE converges to a stationary solution given by (fixed) boundary conditions that make physical sense. We illustrate the results with numerical simulations.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.titleThe nonlinear heat equation with state-dependent parameters and its connection to the Burgers’ and the potential Burgers’ equationnb_NO
dc.typeConference objectnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.date.updated2015-01-19T12:17:22Z
dc.source.volume19nb_NO
dc.source.journalIFAC papers onlinenb_NO
dc.identifier.doi10.3182/20140824-6-ZA-1003.01278
dc.identifier.cristin1180309
dc.description.localcodeThis is the authors' accepted and refereed manuscript to the article. Copyright © 2014 IFAC. Published by Elsevier Ltd. All rights reserved.nb_NO


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel