Body Shape and Orientation Control for Locomotion of Biologically-Inspired Snake Robots
Chapter
Submitted version
Permanent lenke
http://hdl.handle.net/11250/2395480Utgivelsesdato
2014Metadata
Vis full innførselSamlinger
Originalversjon
IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics 2014:993-1000 10.1109/BIOROB.2014.6913910Sammendrag
This paper considers guidance-based motion control of planar snake robots using a dynamic feedback control law. We first present the Euler-Lagrange equations of motion of the robot. Subsequently, we introduce a dynamic feedback control law for the joints of the robot to track a desired gait pattern. This tracking control law depends on the time evolution of the state variables of a dynamic compensator which is used for controlling the orientation of the robot. In particular, we employ the dynamic compensator to practically stabilize a reference head angle defined by a Line-of-Sight path following guidance law. Using an input-output stability analysis, we show the uniform boundedness of the solutions of the controlled system. Furthermore, we use a perturbation analysis to show that the orientation error is ultimately bounded by an arbitrarily small bound. Simulation results are presented to validate the theoretical results.