dc.contributor.author | Rurali, R. | |
dc.contributor.author | Colombo, L. | |
dc.contributor.author | Cartoixà, X. | |
dc.contributor.author | Wilhelmsen, Øivind | |
dc.contributor.author | Trinh, Thuat | |
dc.contributor.author | Bedeaux, Dick | |
dc.contributor.author | Kjelstrup, Signe | |
dc.date.accessioned | 2016-06-09T11:16:01Z | |
dc.date.accessioned | 2016-06-10T11:22:18Z | |
dc.date.available | 2016-06-09T11:16:01Z | |
dc.date.available | 2016-06-10T11:22:18Z | |
dc.date.issued | 2016-04 | |
dc.identifier.citation | Physical Chemistry, Chemical Physics - PCCP 2016, 18:13741 | nb_NO |
dc.identifier.issn | 1463-9076 | |
dc.identifier.uri | http://hdl.handle.net/11250/2392232 | |
dc.description.abstract | We perform computational experiments using nonequilibrium molecular dynamics simulations, showing that the interface between two solid materials can be described as an autonomous thermodynamic system. We verify the local equilibrium and give support to the Gibbs description of the interface also away from the global equilibrium. In doing so, we reconcile the common formulation of the thermal boundary resistance as the ratio between the temperature discontinuity at the interface and the heat flux with a more rigorous derivation from nonequilibrium thermodynamics. We also show that thermal boundary resistance of a junction between two pure solid materials can be regarded as an interface property, depending solely on the interface temperature, as implicitly assumed in some widely used continuum models, such as the acoustic mismatch model. Thermal rectification can be understood on the basis of different interface temperatures for the two flow directions. | nb_NO |
dc.language.iso | eng | nb_NO |
dc.publisher | Royal Society of Chemistry | nb_NO |
dc.rights | Navngivelse 3.0 Norge | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/no/ | * |
dc.title | Heat transport through a solid-solid junction: the interface as an autonomous thermodynamic system | nb_NO |
dc.type | Journal article | nb_NO |
dc.type | Peer reviewed | nb_NO |
dc.date.updated | 2016-06-09T11:16:01Z | |
dc.source.pagenumber | 13741-13745 | nb_NO |
dc.source.volume | 18 | nb_NO |
dc.source.journal | Physical Chemistry Chemical Physics | nb_NO |
dc.identifier.doi | 10.1039/c6cp01872f | |
dc.identifier.cristin | 1353097 | |
dc.description.localcode | This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. | nb_NO |