• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for ingeniørvitenskap (IV)
  • Institutt for konstruksjonsteknikk
  • View Item
  •   Home
  • Fakultet for ingeniørvitenskap (IV)
  • Institutt for konstruksjonsteknikk
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fluid Structure Interaction Simulation on an Idealized Aortic Arch

Eeg, Thomas Bertheau
Master thesis
Thumbnail
View/Open
567014_FULLTEXT01.pdf (2.366Mb)
567014_COVER01.pdf (184.1Kb)
URI
http://hdl.handle.net/11250/237133
Date
2012
Metadata
Show full item record
Collections
  • Institutt for konstruksjonsteknikk [1574]
Abstract
The aortic arch is at risk of several cardiovascular diseases, such as aortic dissection. Many of these risk factors are due to the fluid-structure interaction that occurs in the aorta. Fluid-structure interation (FSI) simulations are a very useful tool in identifying these risks. The goal of this study is to obtain a simplified picture of healthy physiological flow and lay the foundation for further studies on cardiovascular diseases in the aortic arch. A 3-dimensional idealized FSI model of the aorta was constructed from measurements found in the literature. This model was simulated using the commerical codes Abaqus and Ansys Fluent, coupled with the in-house code Tango. Attempts at simulating the model geometry including the braciocephalic, left common and left subclavian carotid arteries were unsuccesful, so a simlified model of only the aortic arch was simulated. Emphasis was placed on the investigation of different boundary conditions. An imposed massflow condition, a pressure condition with resistance or a varying elastance model was set on the inlet and combined with zero pressure, reflection free or Windkessel outlet boundaries. The mass flow inlet with Windkessel outlet gave the most reliable results since the other inlets were mostly incomplete approximations. No conclusion could be drawn on the viability of Ansys Workbench as a meshing utility for studies using Tango, due to lack of information.
Publisher
Institutt for konstruksjonsteknikk

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit